Acquisition/Lock Time Specifications

required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make these corrections. This parameter is also under user control via the choice of crystal frequency, fXCLK.

Another critical parameter is the external filter capacitor. The PLL modifies the voltage on the VCO by adding or subtracting charge from this capacitor. Therefore, the rate at which the voltage changes for a given frequency error (thus change in charge) is proportional to the capacitor size. The size of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL may not be able to adjust the voltage in a reasonable time. See 4.8.3 Choosing a Filter Capacitor.

Also important is the operating voltage potential applied to VDDA. The power supply potential alters the characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if they vary within a known range at very slow speeds. Noise on the power supply is not acceptable, because it causes small frequency errors which continually change the acquisition time of the PLL.

Temperature and processing also can affect acquisition time because the electrical characteristics of the PLL change. The part operates as specified as long as these influences stay within the specified limits. External factors, however, can cause drastic changes in the operation of the PLL. These factors include noise injected into the PLL through the filter capacitor filter, capacitor leakage, stray impedances on the circuit board, and even humidity or circuit board contamination.

4.8.3 Choosing a Filter Capacitor

As described in 4.8.2 Parametric Influences on Reaction Time, the external filter capacitor, CF, is critical to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply voltage. The value of the capacitor must, therefore, be chosen with supply potential and reference frequency in mind. For proper operation, the external filter capacitor must be chosen according to this equation:

C

 

= C

VDDA

F

--------------

 

 

FACT f

RDV

 

 

 

 

 

For acceptable values of CFACT, see 4.8 Acquisition/Lock Time Specifications. For the value of VDDA, choose the voltage potential at which the MCU is operating. If the power supply is variable, choose a value near the middle of the range of possible supply values.

This equation does not always yield a commonly available capacitor size, so round to the nearest available size. If the value is between two different sizes, choose the higher value for better stability. Choosing the lower size may seem attractive for acquisition time improvement, but the PLL can become unstable. Also, always choose a capacitor with a tight tolerance (±20 percent or better) and low dissipation.

4.8.4 Reaction Time Calculation

The actual acquisition and lock times can be calculated using the equations here. These equations yield nominal values under these conditions:

Correct selection of filter capacitor, CF, see 4.8.3 Choosing a Filter Capacitor

Room temperature operation

Negligible external leakage on CGMXFC

Negligible noise

MC68HC908MR32 • MC68HC908MR16 Data Sheet, Rev. 6.1

Freescale Semiconductor

71

Page 71
Image 71
Freescale Semiconductor MC68HC908MR16, MC68HC908MR32 manual Choosing a Filter Capacitor, Reaction Time Calculation

MC68HC908MR16, MC68HC908MR32 specifications

Freescale Semiconductor's MC68HC908MR32 and MC68HC908MR16 microcontrollers are part of the popular HC08 family, designed primarily for embedded applications. These microcontrollers are particularly favored in automotive, industrial, and consumer product sectors due to their reliability and versatility.

One of the standout features of the MC68HC908MR series is its CMOS technology, which enhances performance while minimizing power consumption. This makes these microcontrollers suitable for battery-operated devices. They operate at a maximum clock frequency of 2 MHz and offer a 16-bit architecture, providing a solid balance between processing power and efficiency.

The MC68HC908MR32 variant is equipped with 32KB of flash memory, which allows for the storage of complex programs and extensive data handling. In contrast, the MC68HC908MR16 features 16KB of flash memory, making it ideal for simpler applications. Both microcontrollers also come with 1KB of RAM, enabling efficient data processing and real-time operations.

Another significant characteristic of these microcontrollers is their integrated peripherals. They come with multiple input/output (I/O) pins, which allow for connectivity with various sensors and actuators. The built-in timer systems offer precise timing control for automotive and industrial applications, while the Analog-to-Digital Converter (ADC) provides essential conversion capabilities for various analog signals.

For communication purposes, the MC68HC908MR series includes a serial communication interface, enabling easy integration with other devices and systems. This versatility facilitates the development of complex systems that require interaction with external components.

Security is another crucial aspect of these microcontrollers. They have built-in fail-safe mechanisms to ensure reliable operation under various conditions, making them suitable for critical systems. Additionally, their robust architecture helps to safeguard against potential disruptions or attacks.

In summary, Freescale Semiconductor's MC68HC908MR32 and MC68HC908MR16 microcontrollers are key players in the embedded systems landscape. Their blend of power efficiency, integrated features, and scalability ensures they remain relevant for a wide array of applications, making them a favored choice among engineers and developers looking for dependable solutions in a competitive market.