Timer Interface B (TIMB)

17.3.3.2 Buffered Output Compare

Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the PTE1/TCH0B pin. The TIMB channel registers of the linked pair alternately control the output.

Setting the MS0B bit in TIMB channel 0 status and control register (TBSC0) links channel 0 and channel

1.The output compare value in the TIMB channel 0 registers initially controls the output on the PTE1/TCH0B pin. Writing to the TIMB channel 1 registers enables the TIMB channel 1 registers to synchronously control the output after the TIMB overflows. At each subsequent overflow, the TIMB channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIMB channel 1 status and control register (TBSC1) is unused. While the MS0B bit is set, the channel 1 pin, PTE2/TCH1B, is available as a general-purpose I/O pin.

NOTE

In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.

17.3.4 Pulse-Width Modulation (PWM)

By using the toggle-on-overflow feature with an output compare channel, the TIMB can generate a PWM signal. The value in the TIMB counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIMB counter modulo registers. The time between overflows is the period of the PWM signal.

As Figure 17-4shows, the output compare value in the TIMB channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIMB to clear the channel pin on output compare if the polarity of the PWM pulse is 1 (ELSxA = 0). Program the TIMB to set the pin if the polarity of the PWM pulse is 0 (ELSxA = 1).

 

OVERFLOW

OVERFLOW

 

 

PERIOD

POLARITY = 1

TCHx

 

(ELSxA = 0)

 

 

 

 

 

PULSE

 

 

WIDTH

POLARITY = 0

TCHx

 

(ELSxA = 1)

 

 

 

OUTPUT

 

 

COMPARE

OVERFLOW

OUTPUT

OUTPUT

COMPARE

COMPARE

Figure 17-4. PWM Period and Pulse Width

The value in the TIMB counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIMB counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is $000 (see 17.7.1 TIMB Status and Control Register).

MC68HC908MR32 • MC68HC908MR16 Data Sheet, Rev. 6.1

240

Freescale Semiconductor

Page 240
Image 240
Freescale Semiconductor MC68HC908MR32, MC68HC908MR16 manual Freescale Semiconductor

MC68HC908MR16, MC68HC908MR32 specifications

Freescale Semiconductor's MC68HC908MR32 and MC68HC908MR16 microcontrollers are part of the popular HC08 family, designed primarily for embedded applications. These microcontrollers are particularly favored in automotive, industrial, and consumer product sectors due to their reliability and versatility.

One of the standout features of the MC68HC908MR series is its CMOS technology, which enhances performance while minimizing power consumption. This makes these microcontrollers suitable for battery-operated devices. They operate at a maximum clock frequency of 2 MHz and offer a 16-bit architecture, providing a solid balance between processing power and efficiency.

The MC68HC908MR32 variant is equipped with 32KB of flash memory, which allows for the storage of complex programs and extensive data handling. In contrast, the MC68HC908MR16 features 16KB of flash memory, making it ideal for simpler applications. Both microcontrollers also come with 1KB of RAM, enabling efficient data processing and real-time operations.

Another significant characteristic of these microcontrollers is their integrated peripherals. They come with multiple input/output (I/O) pins, which allow for connectivity with various sensors and actuators. The built-in timer systems offer precise timing control for automotive and industrial applications, while the Analog-to-Digital Converter (ADC) provides essential conversion capabilities for various analog signals.

For communication purposes, the MC68HC908MR series includes a serial communication interface, enabling easy integration with other devices and systems. This versatility facilitates the development of complex systems that require interaction with external components.

Security is another crucial aspect of these microcontrollers. They have built-in fail-safe mechanisms to ensure reliable operation under various conditions, making them suitable for critical systems. Additionally, their robust architecture helps to safeguard against potential disruptions or attacks.

In summary, Freescale Semiconductor's MC68HC908MR32 and MC68HC908MR16 microcontrollers are key players in the embedded systems landscape. Their blend of power efficiency, integrated features, and scalability ensures they remain relevant for a wide array of applications, making them a favored choice among engineers and developers looking for dependable solutions in a competitive market.