Chapter 3

Analog-to-Digital Converter (ADC)

3.1 Introduction

This section describes the 10-bit analog-to-digital converter (ADC).

3.2 Features

Features of the ADC module include:

10 channels with multiplexed input

Linear successive approximation

10-bit resolution, 8-bit accuracy

Single or continuous conversion

Conversion complete flag or conversion complete interrupt

Selectable ADC clock

Left or right justified result

Left justified sign data mode

High impedance buffered ADC input

3.3 Functional Description

Ten ADC channels are available for sampling external sources at pins PTC1/ATD9:PTC0/ATD8 and PTB7/ATD7:PTB0/ATD0. To achieve the best possible accuracy, these pins are implemented as input-only pins when the analog-to-digital (A/D) feature is enabled. An analog multiplexer allows the single ADC to select one of the 10 ADC channels as ADC voltage IN (ADCVIN). ADCVIN is converted by the successive approximation algorithm. When the conversion is completed, the ADC places the result in the ADC data register (ADRH and ADRL) and sets a flag or generates an interrupt. See Figure 3-2.

MC68HC908MR32 • MC68HC908MR16 Data Sheet, Rev. 6.1

Freescale Semiconductor

45

Page 45
Image 45
Freescale Semiconductor MC68HC908MR16, MC68HC908MR32 manual Chapter Analog-to-Digital Converter ADC, Functional Description

MC68HC908MR16, MC68HC908MR32 specifications

Freescale Semiconductor's MC68HC908MR32 and MC68HC908MR16 microcontrollers are part of the popular HC08 family, designed primarily for embedded applications. These microcontrollers are particularly favored in automotive, industrial, and consumer product sectors due to their reliability and versatility.

One of the standout features of the MC68HC908MR series is its CMOS technology, which enhances performance while minimizing power consumption. This makes these microcontrollers suitable for battery-operated devices. They operate at a maximum clock frequency of 2 MHz and offer a 16-bit architecture, providing a solid balance between processing power and efficiency.

The MC68HC908MR32 variant is equipped with 32KB of flash memory, which allows for the storage of complex programs and extensive data handling. In contrast, the MC68HC908MR16 features 16KB of flash memory, making it ideal for simpler applications. Both microcontrollers also come with 1KB of RAM, enabling efficient data processing and real-time operations.

Another significant characteristic of these microcontrollers is their integrated peripherals. They come with multiple input/output (I/O) pins, which allow for connectivity with various sensors and actuators. The built-in timer systems offer precise timing control for automotive and industrial applications, while the Analog-to-Digital Converter (ADC) provides essential conversion capabilities for various analog signals.

For communication purposes, the MC68HC908MR series includes a serial communication interface, enabling easy integration with other devices and systems. This versatility facilitates the development of complex systems that require interaction with external components.

Security is another crucial aspect of these microcontrollers. They have built-in fail-safe mechanisms to ensure reliable operation under various conditions, making them suitable for critical systems. Additionally, their robust architecture helps to safeguard against potential disruptions or attacks.

In summary, Freescale Semiconductor's MC68HC908MR32 and MC68HC908MR16 microcontrollers are key players in the embedded systems landscape. Their blend of power efficiency, integrated features, and scalability ensures they remain relevant for a wide array of applications, making them a favored choice among engineers and developers looking for dependable solutions in a competitive market.