Reference Manual
Rosemount 8732
High Process Noise Functionality
NOTE
In applications where very high levels of noise are a concern, it is recommended that a
The High Process Noise diagnostic is useful for detecting situations where the process fluid may be causing electrical noise resulting in a poor measurement from the magnetic flowmeter. There are three basic types of process noise that can affect the performance of the magnetic flowmeter system.
1/f Noise
This type of noise has higher amplitudes at lower frequencies, but generally degrades over increasing frequencies. Potential sources of 1/f noise include chemical mixing and the general background noise of the plant.
Spike Noise
This type of noise generally results in a high amplitude signal at specific frequencies which can vary depending on the source of the noise. Common sources of spike noise include chemical injections directly upstream of the flowmeter, hydraulic pumps, and slurry flows with low concentrations of particles in the stream. The particles bounce off of the electrode generating a “spike” in the electrode signal. An example of this type of flow stream would be a recycle flow in a paper mill.
White Noise
This type of noise results in a high amplitude signal that is relatively constant over the frequency range. Common sources of white noise include chemical reactions or mixing that occurs as the fluid passes through the flowmeter and high concentration slurry flows where the particulates are constantly passing over the electrode head. An example of this type of flow stream would be a high consistency pulp stock stream (>10%) in a paper mill.
The transmitter continuously monitors signal amplitudes over a wide range of frequencies. For the high process noise diagnostic, the transmitter specifically looks at the signal amplitude at frequencies of 2.5 Hz, 7.5 Hz, 32.5 Hz, and
42.5Hz. The transmitter uses the values from 2.5 and 7.5 Hz and calculates an average noise level. This average is compared to the amplitude of the signal at 5 Hz. If the signal amplitude is not 25 times greater than the noise level, and the coil drive frequency is set at 5 Hz, the High Process Noise alert will activate indicating that the flow signal may be compromised. The transmitter performs the same analysis around the 37.5 Hz coil drive frequency using the 32.5 Hz and 42.5 Hz values to establish a noise level.