2 - Introduction to Programming

Including Common Commands

You can combine common commands with system commands in the same message. Treat the common command as a message unit by separating it with a semicolon (the message unit separator). Common commands do not affect the active header path; you may insert them anywhere in the message.

VOLTage:TRIGger 7.5;INITialize;*TRG

OUTPut OFF;*RCL 2;OUTPut ON

Using Queries

Observe the following precautions with queries:

υSet up the proper number of variables for the returned data.

υRead back all the results of a query before sending another command to the ac source. Otherwise a Query Interrupted error will occur and the unreturned data will be lost.

Coupled Commands

When commands are coupled it means that the value sent by one command is affected by the settings of the other commands. The following commands are coupled in the ac source:

υthe voltage, voltage offset, and function shape commands

υthe step, pulse, and list commands that control output voltages, voltage offsets, and function shapes

υthe pulse commands that program the width, duty cycle, period, and the hold parameter

υthe voltage range and current limit commands in some ac source models

As explained later in Chapter 4, the order in which data is sent by these coupled commands can be important when more than one parameter is changed.

Structure of a SCPI Message

SCPI messages consist of one or more message units ending in a message terminator. The terminator is not part of the syntax, but implicit in the way your programming language indicates the end of a line (such as a newline or end-of-line character).

The Message Unit

The simplest SCPI command is a single message unit consisting of a command header (or keyword) followed by a message terminator.

ABORt<newline>

VOLTage?<newline>

The message unit may include a parameter after the header. The parameter usually is numeric, but it can be a string:

VOLTage 20<newline>

VOLTage MAX<newline>

20

Page 20
Image 20
Agilent Technologies 6843A, 6834B Structure of a Scpi Message, Including Common Commands, Using Queries, Coupled Commands

6812B, 6811B, 6813B, 6834B, 6843A specifications

Agilent Technologies, a leader in electronic test and measurement equipment, offers a range of powerful signal sources including the 6843A, 6834B, 6814B, 6813B, and 6811B models. These instruments are designed to support various applications in research, development, and manufacturing, providing precise signal generation capabilities.

The Agilent 6843A is a versatile signal generator known for its exceptional frequency range and modulation capabilities. It supports an extensive bandwidth, making it ideal for applications that require high-frequency signal generation. With its superior phase noise performance, the 6843A is an excellent choice for radar, wireless communications, and electronic warfare applications. The instrument features an intuitive user interface, allowing engineers to set parameters quickly and efficiently.

Next, the Agilent 6834B offers exceptional performance characteristics, including high output power and low distortion. This signal generator is particularly noted for its ability to produce complex modulation formats, making it suitable for testing advanced wireless communication systems. With a reliable and stable output, the 6834B ensures accurate and repeatable measurements, which is vital for thorough testing processes.

The 6814B model stands out for its dual-channel capabilities, allowing users to generate simultaneous signals for testing multiple components or systems. This feature significantly enhances testing efficiency and flexibility for engineers. With built-in arbitrary waveform functionality, users can create custom waveforms, making the 6814B suitable for a wide range of applications including device characterization and signal processing research.

For those seeking a more compact solution, the Agilent 6813B provides essential signal generation features without compromising on performance. It is designed for a variety of applications across telecommunications and consumer electronics, featuring a straightforward interface and robust performance metrics.

Lastly, the 6811B is an entry-level yet capable model that supports a broad spectrum of testing needs. Perfect for educational and laboratory environments, it provides essential functionalities required for effective signal generation and analysis.

Overall, Agilent Technologies' 6843A, 6834B, 6814B, 6813B, and 6811B signal generators offer an array of features and technologies that cater to various application needs. Their precision, reliability, and user-oriented designs position them as invaluable assets in any testing environment, ensuring engineers can carry out their work with confidence and accuracy.