Language Reference

MEASure Group of Commands

Fetch Commands

:FETCh:<measurement>[n]?

This command puts selected data from the most recent measurement into the output buffer. Use FETCh if you have already made a good measurement and you want to return several types of data (different [n] values, e.g. both scalars and trace data) from a single measurement. FETCh saves you the time of re-making the measurement. You can only FETCh results from the measurement that is currently active, it will not change to a different measurement.

If you need to get new measurement data, use the READ command, which is equivalent to an INITiate followed by a FETCh.

The scalar measurement results will be returned if the optional [n] value is not included, or is set to 1. If the [n] value is set to a value other than 1, the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available. The binary data formats should be used for handling large blocks of data since they are smaller and transfer faster then the ASCII format. (FORMat:DATA)

FETCh may be used to return results other than those specified with the original READ or MEASure command that you sent.

Read Commands

:READ:<measurement>[n]?

Does not preset the measurement to the factory default settings. For example, if you have previously initiated the ACP measurement and you send READ:ACP? it will initiate a new measurement using the same instrument settings.

Initiates the measurement and puts valid data into the output buffer. If a measurement other than the current one is specified, the instrument will switch to that measurement before it initiates the measurement and returns results.

For example, suppose you have previously initiated the ACP measurement, but now you are running the channel power measurement. Then you send READ:ACP? It will change from channel power back to ACP and, using the previous ACP settings, will initiate the measurement and return results.

Blocks other SCPI communication, waiting until the measurement is complete before returning the results.

If the optional [n] value is not included, or is set to 1, the scalar measurement results will be returned. If the [n] value is set to a value other than 1, the selected trace data results will be returned.

Chapter 5

257

Page 257
Image 257
Agilent Technologies E4406A VSA manual Fetch Commands, Read Commands, READmeasurementn?

E4406A VSA specifications

The Agilent Technologies E4406A Vector Signal Analyzer (VSA) is a sophisticated instrument designed for the analysis of complex signals. This versatile device is widely used in various fields, including telecommunications, broadcasting, and aerospace, thanks to its high-performance capabilities and advanced features.

One of the standout characteristics of the E4406A is its ability to analyze digital modulation schemes. It supports a wide range of formats, including 2G, 3G, 4G, and emerging standards, providing a comprehensive tool for engineers and researchers working with modern communication systems. The VSA is particularly valued for its flexibility in signal analysis, allowing users to capture and demodulate signals in real-time.

The E4406A utilizes advanced measurement technologies that ensure precise signal analysis. With a frequency range from 50 kHz to 6 GHz, the VSA can handle various applications, making it a suitable choice for both R&D and production testing. The instrument employs digital signal processing techniques, enabling high-resolution measurements and exceptional dynamic range. This ensures accurate interpretation of signals, even in the presence of noise or interference.

Another significant feature of the E4406A is its user-friendly interface. The combination of a graphical display and intuitive controls allows users to visualize complex waveforms and spectra easily. The software capabilities of the E4406A further enhance its usability, providing various analysis options including error vector magnitude (EVM), adjacent channel power (ACP), and spectrum occupancy. These tools allow engineers to diagnose issues rapidly and efficiently optimize their designs.

The modularity of the E4406A is a key aspect of its design. Users can upgrade their instrument with various option packs and software for specific applications, making it adaptable to a variety of testing scenarios. This flexibility ensures that the VSA remains relevant as technology evolves and new standards emerge.

In conclusion, the Agilent E4406A Vector Signal Analyzer stands out due to its combination of advanced measurement capabilities, user-friendly interface, and adaptability. Its extensive feature set makes it an essential tool for professionals involved in the development and testing of modern communication systems. Whether for research, design validation, or quality control, the E4406A delivers high-performance signal analysis that meets the demands of today's fast-paced technology landscape.