NOTE

NOTE

Programming Fundamentals

Using the Instrument Status Registers

Generating a Service Request To use the SRQ method, you must understand how service requests are generated. Bit 6 of the status byte register is the request service (RQS) bit. The *SRE command is used to configure the RQS bit to report changes in instrument status. When such a change occurs, the RQS bit is set. It is cleared when the status byte register is queried using *SRE? (with a serial poll.) It can be queried without erasing the contents with *STB?.

When a register set causes a summary bit in the status byte to change from 0 to 1, the instrument can initiate the service request (SRQ) process. However, the process is only initiated if both of the following conditions are true:

The corresponding bit of the service request enable register is also set to 1.

The instrument does not have a service request pending. (A service request is considered to be pending between the time the instrument’s SRQ process is initiated and the time the controller reads the status byte register.)

The SRQ process sets the GPIB SRQ line true. It also sets the status byte’s request service (RQS) bit to 1. Both actions are necessary to inform the controller that the instrument requires service. Setting the SRQ line only informs the controller that some device on the bus requires service. Setting the RQS bit allows the controller to determine which instrument requires service.

If your program enables the controller to detect and respond to service requests, it should instruct the controller to perform a serial poll when the GPIB SRQ line is set true. Each device on the bus returns the contents of its status byte register in response to this poll. The device whose RQS bit is set to 1 is the device that requested service.

When you read the instrument’s status byte register with a serial poll, the RQS bit is reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-measurement and the measurement is in continuous mode, then restarting a measurement (INIT command) can cause the measuring bit to pulse low. This causes an SRQ when you have not actually reached the "end-of-measurement" condition. To avoid this:

1.Set INITiate:CONTinuous off.

2.Set/enable the status registers.

3.Restart the measurement (send INIT).

Chapter 2

81

Page 81
Image 81
Agilent Technologies E4406A VSA manual Using the Instrument Status Registers

E4406A VSA specifications

The Agilent Technologies E4406A Vector Signal Analyzer (VSA) is a sophisticated instrument designed for the analysis of complex signals. This versatile device is widely used in various fields, including telecommunications, broadcasting, and aerospace, thanks to its high-performance capabilities and advanced features.

One of the standout characteristics of the E4406A is its ability to analyze digital modulation schemes. It supports a wide range of formats, including 2G, 3G, 4G, and emerging standards, providing a comprehensive tool for engineers and researchers working with modern communication systems. The VSA is particularly valued for its flexibility in signal analysis, allowing users to capture and demodulate signals in real-time.

The E4406A utilizes advanced measurement technologies that ensure precise signal analysis. With a frequency range from 50 kHz to 6 GHz, the VSA can handle various applications, making it a suitable choice for both R&D and production testing. The instrument employs digital signal processing techniques, enabling high-resolution measurements and exceptional dynamic range. This ensures accurate interpretation of signals, even in the presence of noise or interference.

Another significant feature of the E4406A is its user-friendly interface. The combination of a graphical display and intuitive controls allows users to visualize complex waveforms and spectra easily. The software capabilities of the E4406A further enhance its usability, providing various analysis options including error vector magnitude (EVM), adjacent channel power (ACP), and spectrum occupancy. These tools allow engineers to diagnose issues rapidly and efficiently optimize their designs.

The modularity of the E4406A is a key aspect of its design. Users can upgrade their instrument with various option packs and software for specific applications, making it adaptable to a variety of testing scenarios. This flexibility ensures that the VSA remains relevant as technology evolves and new standards emerge.

In conclusion, the Agilent E4406A Vector Signal Analyzer stands out due to its combination of advanced measurement capabilities, user-friendly interface, and adaptability. Its extensive feature set makes it an essential tool for professionals involved in the development and testing of modern communication systems. Whether for research, design validation, or quality control, the E4406A delivers high-performance signal analysis that meets the demands of today's fast-paced technology landscape.