Operating Instructions

Model GFC7000TA Carbon Dioxide Analyzer

followed by zero or more digits, an optional decimal point, and zero or more digits. (At least one digit must appear before or after the decimal point.) Scientific notation is not permitted. For example, +1.0, 1234.5678, -0.1, 1 are all valid floating-point numbers.

Boolean expressions are used to specify the value of variables or I/O signals that may assume only two values. They are denoted by the keywords ON and OFF.

Text strings are used to represent data that cannot be easily represented by other data types, such as data channel names, which may contain letters and numbers. They consist of a quotation mark, followed by one or more printable characters, including spaces, letters, numbers, and symbols, and a final quotation mark. For example, “a”, “1”, “123abc”, and “()[]<>” are all valid text strings. It is not possible to include a quotation mark character within a text string.

Some commands allow you to access variables, messages, and other items, such as DAS data channels, by name. When using these commands, you must type the entire name of the item; you cannot abbreviate any names.

6.15.2.5. Status Reporting

Reporting of status messages as an audit trail is one of the three principal uses for the RS-232 interface (the other two being the command line interface for controlling the instrument and the download of data in electronic format). You can effectively disable the reporting feature by setting the interface to quiet mode (Section 6.11.5., Table 6-10).

Status reports include DAS data (when reporting is enabled), warning messages, calibration and diagnostic status messages. Refer to Appendix A-3 for a list of the possible messages, and this for information on controlling the instrument through the RS-232 interface.

General Message Format

All messages from the instrument (including those in response to a command line request) are in the format:

X DDD:HH:MM [Id] MESSAGE<CRLF>

Where:

Xis a command type designator, a single character indicating the message type, as shown in the Table 6-27.

DDD:HH:MM is the time stamp, the date and time when the message was issued. It consists of the Day-of-year (DDD) as a number from 1 to 366, the hour of the day (HH) as a number from 00 to 23, and the minute (MM) as a number from 00 to 59.

[ID]

is the analyzer ID, a number with 1 to 4 digits.

MESSAGE

is the message content that may contain warning messages, test

 

measurements, DAS reports, variable values, etc.

<CRLF>

is a carriage return / line feed pair, which terminates the message.

The uniform nature of the output messages makes it easy for a host computer to parse them into an easy structure. Keep in mind that the front panel display does not give any information on the time a message was issued, hence it is useful to log such messages for trouble-shooting and reference purposes.

Teledyne Analytical Instruments

148

Page 166
Image 166
Teledyne gfc 7000ta operation manual Status Reporting, Measurements, DAS reports, variable values, etc

gfc 7000ta specifications

The Teledyne GFC 7000TA is a cutting-edge, high-performance gas flow calibrator designed for both laboratory and field applications. This instrument is renowned for its accuracy, versatility, and reliability, making it an ideal choice for various industries, including aerospace, environmental monitoring, and manufacturing.

One of the standout features of the GFC 7000TA is its advanced measurement technology. It utilizes state-of-the-art thermal mass flow meters, which allow for precise fluid measurement across a wide range of flow rates. This technology ensures highly accurate readings, which are essential for applications requiring stringent compliance with regulatory standards.

The GFC 7000TA is capable of accommodating various types of gases, making it particularly versatile. Users can calibrate flow for gases such as air, nitrogen, or carbon dioxide, providing flexibility in a multitude of applications. The device also supports dual-channel capabilities, allowing simultaneous measurement and calibration of two different gas types, enhancing productivity and efficiency in processes.

Another notable characteristic of the GFC 7000TA is its user-friendly interface. Equipped with a high-resolution touchscreen display, the device offers intuitive navigation and data visualization. Users can easily set parameters, view real-time measurements, and generate printed reports. This interface reduces the learning curve for new operators, allowing organizations to implement the GFC 7000TA with minimal training.

In addition to its advanced measuring capabilities, the GFC 7000TA features a robust design for durability in harsh environments. The instrument is compliant with various international standards, ensuring its reliability and performance in various conditions. Its portable form factor makes it convenient for fieldwork, while the rugged construction provides peace of mind for users working in demanding settings.

The GFC 7000TA also incorporates modern connectivity options. With built-in USB and Ethernet ports, users can easily integrate the device into their existing systems for data logging and remote monitoring. This connectivity feature enables real-time data access and enhances the potential for analysis and optimization of gas flow systems.

In summary, the Teledyne GFC 7000TA is a high-performance gas flow calibrator characterized by its advanced thermal mass flow measurement technology, versatility in accommodating various gases, user-friendly interface, and robust design. With its modern connectivity features, this instrument stands out as a vital tool for professionals seeking precision and reliability in gas flow applications.