ESD

Model GFC7000TA Carbon Dioxide Analyzer

11. A PRIMER ON ELECTRO-STATIC DISCHARGE

Teledyne Instruments considers the prevention of damage caused by the discharge of static electricity to be extremely important part of making sure that your analyzer continues to provide reliable service for a long time. This section describes how static electricity occurs, why it is so dangerous to electronic components and assemblies as well as how to prevent that damage from occurring.

11.1. How Static Charges are Created

Modern electronic devices such as the types used in the various electronic assemblies of your analyzer, are very small, require very little power and operate very quickly. Unfortunately, the same characteristics that allow them to do these things also make them very susceptible to damage from the discharge of static electricity. Controlling electrostatic discharge begins with understanding how electro-static charges occur in the first place.

Static electricity is the result of something called triboelectric charging which happens whenever the atoms of the surface layers of two materials rub against each other. As the atoms of the two surfaces move together and separate, some electrons from one surface are retained by the other.

Materials

 

 

 

Materials

Makes

 

 

 

Separate

Contact

 

 

 

 

+

+

+

+

PROTONS = 3

 

PROTONS = 3

 

PROTONS = 3

 

PROTONS = 3

 

 

ELECTRONS = 2

 

ELECTRONS = 4

ELECTRONS = 3

 

ELECTRONS = 3

 

 

 

 

 

 

NET CHARGE = -1

 

NET CHARGE = +1

NET CHARGE = 0

 

NET CHARGE = 0

 

 

 

 

 

Figure 11-1: Triboelectric Charging

If one of the surfaces is a poor conductor or even a good conductor that is not grounded, the resulting positive or negative charge cannot bleed off and becomes trapped in place, or static. The most common example of triboelectric charging happens when someone wearing leather or rubber soled shoes walks across a nylon carpet or linoleum tiled floor. With each step, electrons change places and the resulting electro-static charge builds up, quickly reaching significant levels. Pushing an epoxy printed circuit board across a workbench, using a plastic handled screwdriver or even the constant jostling of StyrofoamTM pellets during shipment can also build hefty static charges

Table 11-1: Static Generation Voltages for Typical Activities

MEANS OF GENERATION

65-90% RH

10-25% RH

Walking across nylon carpet

1,500V

35,000V

 

 

 

Walking across vinyl tile

250V

12,000V

Worker at bench

100V

6,000V

Teledyne Analytical Instruments

255

Page 273
Image 273
Teledyne gfc 7000ta How Static Charges are Created, Static Generation Voltages for Typical Activities, Means of Generation

gfc 7000ta specifications

The Teledyne GFC 7000TA is a cutting-edge, high-performance gas flow calibrator designed for both laboratory and field applications. This instrument is renowned for its accuracy, versatility, and reliability, making it an ideal choice for various industries, including aerospace, environmental monitoring, and manufacturing.

One of the standout features of the GFC 7000TA is its advanced measurement technology. It utilizes state-of-the-art thermal mass flow meters, which allow for precise fluid measurement across a wide range of flow rates. This technology ensures highly accurate readings, which are essential for applications requiring stringent compliance with regulatory standards.

The GFC 7000TA is capable of accommodating various types of gases, making it particularly versatile. Users can calibrate flow for gases such as air, nitrogen, or carbon dioxide, providing flexibility in a multitude of applications. The device also supports dual-channel capabilities, allowing simultaneous measurement and calibration of two different gas types, enhancing productivity and efficiency in processes.

Another notable characteristic of the GFC 7000TA is its user-friendly interface. Equipped with a high-resolution touchscreen display, the device offers intuitive navigation and data visualization. Users can easily set parameters, view real-time measurements, and generate printed reports. This interface reduces the learning curve for new operators, allowing organizations to implement the GFC 7000TA with minimal training.

In addition to its advanced measuring capabilities, the GFC 7000TA features a robust design for durability in harsh environments. The instrument is compliant with various international standards, ensuring its reliability and performance in various conditions. Its portable form factor makes it convenient for fieldwork, while the rugged construction provides peace of mind for users working in demanding settings.

The GFC 7000TA also incorporates modern connectivity options. With built-in USB and Ethernet ports, users can easily integrate the device into their existing systems for data logging and remote monitoring. This connectivity feature enables real-time data access and enhances the potential for analysis and optimization of gas flow systems.

In summary, the Teledyne GFC 7000TA is a high-performance gas flow calibrator characterized by its advanced thermal mass flow measurement technology, versatility in accommodating various gases, user-friendly interface, and robust design. With its modern connectivity features, this instrument stands out as a vital tool for professionals seeking precision and reliability in gas flow applications.