Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

5.5.3.1.3 Type III—Faults During MOVEM Operand Transfer. Bus faults that occur as a result of MOVEM operand transfer are classified as type III faults. MOVEM instruction prefetch faults are type II faults.

Type III faults cause an immediate exception that aborts the current instruction. None of the registers altered during execution of the faulted instruction are restored prior to execution of the fault handler. This includes any register predecremented as a result of the effective address calculation or any register overwritten during instruction execution. Since postincremented registers are not updated until the end of an instruction, the register retains its pre-instruction value unless overwritten by operand movement.

The SSW for faults in this category contains the following bit pattern:

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

0

1

0

TR

B1

B0

RR

0

IN

RW

LG

 

SIZ

 

FUNC

MV is set, indicating that MOVEM should be continued from the point where the fault occurred upon return from the exception handler. TR, B1, and B0 are set if a corresponding exception is pending when the bus error exception is taken. IN is set if a bus fault occurs while prefetching an opcode or an extension word during instruction restart. RW, LG, SIZ, and FUNC all reflect the type of bus cycle that caused the fault. All write faults have the RR bit set to indicate that the write should be rerun upon return from the exception handler.

The remainder of the stack frame contains sufficient information to continue MOVEM with operand transfer following a faulted transfer. The address of the next operand to be transferred, incremented or decremented by operand size, is stored in the faulted address location ($08). The stacked transfer counter is set to 16 minus the number of transfers attempted (including the faulted cycle). Refer to Figure 5-12 for the stacking format.

5.5.3.1.4 Type IV—Faults During Exception Processing. The fourth type of fault occurs during exception processing. If this exception is a second address or bus error, the machine halts in the double bus fault condition. However, if the exception is one that causes a four- or six-word stack frame to be written, a bus cycle fault frame is written below the faulted exception stack frame.

The SSW for a fault within an exception contains the following bit pattern:

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

1

0

0

TR

B1

B0

0

0

0

1

LG

 

SIZ

 

FUNC

TR, B1, and B0 are set if a corresponding exception is pending when the bus error exception is taken.

The contents of the faulted exception stack frame are included in the bus fault stack frame. The pre-exception SR and the format/vector word of the faulted frame are stacked. The type of exception can be determined from the format/vector word. If the faulted exception stack frame contains six words, the PC of the instruction that caused the initial

5- 56MC68340 USER’S MANUALMOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Page 193
Image 193
Motorola manual 56MC68340 USER’S Manualmotorola

MC68340 specifications

The Motorola MC68340 is a highly integrated microprocessor that was introduced in the early 1990s. It belongs to the 68000 family of microprocessors and is designed to cater to the demands of embedded systems, particularly in telecommunications and networking applications. This chip represents a significant evolution in microprocessor technology by combining a microprocessor core with additional peripherals on a single chip, making it an attractive solution for engineers looking to design compact and efficient systems.

One of the key features of the MC68340 is its 32-bit architecture, which allows for significant processing power and data handling capabilities. This architecture enables the processor to handle larger data sizes and perform more complex calculations compared to its 16-bit predecessors. The MC68340 operates at clock speeds typically ranging from 16 MHz to 25 MHz. Its dual instruction pipeline enhances throughput, allowing for simultaneous instruction fetches and executions, which significantly boosts performance.

A notable characteristic of the MC68340 is the inclusion of integrated peripherals, which help reduce the overall component count in a system. Key integrated components include a memory management unit (MMU), a direct memory access (DMA) controller, and various communication interfaces such as serial ports. The memory management capabilities enhance the processor's ability to manage memory resources efficiently, enabling it to support multitasking environments commonly found in modern computing.

In terms of connectivity, the MC68340 features connections for both synchronous and asynchronous serial communication, making it well-suited for networking tasks. The processor supports a range of bus standards, including address and data buses, which facilitate seamless interaction with peripheral devices.

Another important aspect of the MC68340 is its flexibility. The processor supports multiple operating modes, including multiple CPU configurations and compatibility with the Motorola 68000 family, allowing for easier integration into existing systems.

Moreover, the MC68340 boasts low power consumption compared to many of its contemporaries, making it an excellent choice for battery-operated applications, enhancing its appeal in sectors like telecommunications, industrial control, and automotive systems. Its combination of performance, integration, versatility, and efficiency has secured the MC68340 a reputable position in the annals of embedded systems technology, proving to be a valuable asset for developers and engineers alike.