Motorola MC68340 manual CPU Space Cycles, CPU Space Address Encoding

Models: MC68340

1 441
Download 441 pages 2.45 Kb
Page 70
Image 70

Semiconductor, Inc...

Freescale Semiconductor, Inc.

proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK1 and DSACK0 must remain negated throughout the asynchronous input setup and hold times around the end of S2. If wait states are added, the MC68340 continues to sample DSACKon the falling edges of the clock until one is recognized. The selected device uses R/W, DS, SIZ1/SIZ0, and A0 to latch data from the appropriate section(s) of D15–D8 and D7–D0. SIZ1/SIZ0 and A0 select the data bus sections. If it has not already done so, the device asserts DSACKwhen it has successfully stored the data.

State 4—The MC68340 issues no new control signals during S4.

State 5—The MC68340 negates AS and DS during S5. It holds the address and data valid during S5 to provide address hold time for memory systems. R/W and FC3–FC0 also remain valid throughout S5. If more than one write cycle is required, states S0–S5 are repeated for each write cycle. The external device keeps DSACKasserted until it detects the negation of AS or DS (whichever it detects first). The device must remove its data and negate DSACKwithin approximately one clock period after sensing the negation of AS or DS.

3.4 CPU SPACE CYCLES

FC3–FC0 select user and supervisor program and data areas. The area selected by FC3– FC0 = $7 is classified as the CPU space. The breakpoint acknowledge, LPSTOP broadcast, module base address register access, and interrupt acknowledge cycles described in the following paragraphs use CPU space. The CPU space type, which is encoded on A19–A16 during a CPU space operation, indicates the function that the MC68340 is performing. On the MC68340, four of the encodings are implemented as shown in Figure 3-10. All unused values are reserved by Motorola for additional CPU space types.

Freescale

BREAKPOINT ACKNOWLEDGE

LOW-POWER STOP BROADCAST

MODULE BASE ADDRESS REGISTER ACCESS

INTERRUPT ACKNOWLEDGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU SPACE CYCLES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

ADDRESS BUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

0

 

31

 

 

 

 

 

 

 

 

 

 

 

19

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

1

1

 

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BKPT#

T

0

 

3

 

 

0

 

31

 

 

 

 

 

 

 

 

 

 

 

19

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

1

1

 

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

 

3

 

 

0

 

31

 

 

 

 

 

 

 

 

 

 

 

19

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1 1

1

 

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

 

3

 

 

0

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

1

1

 

 

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

LEVEL

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU SPACE

TYPE FIELD

Figure 3-10. CPU Space Address Encoding

MOTOROLAMC68340 USER’S MANUAL3- 21

For More Information On This Product,

Go to: www.freescale.com

Page 70
Image 70
Motorola MC68340 manual CPU Space Cycles, CPU Space Address Encoding

MC68340 specifications

The Motorola MC68340 is a highly integrated microprocessor that was introduced in the early 1990s. It belongs to the 68000 family of microprocessors and is designed to cater to the demands of embedded systems, particularly in telecommunications and networking applications. This chip represents a significant evolution in microprocessor technology by combining a microprocessor core with additional peripherals on a single chip, making it an attractive solution for engineers looking to design compact and efficient systems.

One of the key features of the MC68340 is its 32-bit architecture, which allows for significant processing power and data handling capabilities. This architecture enables the processor to handle larger data sizes and perform more complex calculations compared to its 16-bit predecessors. The MC68340 operates at clock speeds typically ranging from 16 MHz to 25 MHz. Its dual instruction pipeline enhances throughput, allowing for simultaneous instruction fetches and executions, which significantly boosts performance.

A notable characteristic of the MC68340 is the inclusion of integrated peripherals, which help reduce the overall component count in a system. Key integrated components include a memory management unit (MMU), a direct memory access (DMA) controller, and various communication interfaces such as serial ports. The memory management capabilities enhance the processor's ability to manage memory resources efficiently, enabling it to support multitasking environments commonly found in modern computing.

In terms of connectivity, the MC68340 features connections for both synchronous and asynchronous serial communication, making it well-suited for networking tasks. The processor supports a range of bus standards, including address and data buses, which facilitate seamless interaction with peripheral devices.

Another important aspect of the MC68340 is its flexibility. The processor supports multiple operating modes, including multiple CPU configurations and compatibility with the Motorola 68000 family, allowing for easier integration into existing systems.

Moreover, the MC68340 boasts low power consumption compared to many of its contemporaries, making it an excellent choice for battery-operated applications, enhancing its appeal in sectors like telecommunications, industrial control, and automotive systems. Its combination of performance, integration, versatility, and efficiency has secured the MC68340 a reputable position in the annals of embedded systems technology, proving to be a valuable asset for developers and engineers alike.