Motorola MC68340 manual Simultaneous Instruction Execution

Models: MC68340

1 441
Download 441 pages 2.45 Kb
Page 228
Image 228

Freescale Semiconductor, Inc...

Freescale Semiconductor, Inc.

priority, many instruction words would be flushed unused, and necessary operand cycles would be delayed. To maximize available bus bandwidth, the CPU32 will schedule a prefetch only when the next instruction is not a change-of-flow instruction and when there is room in the pipeline for the prefetch.

5.7.1.3.2Write Pending Buffer. The CPU32 incorporates a single-operand write pending buffer. The buffer permits the microsequencer to continue execution after a request for a write cycle is queued in the bus controller. The time needed for a write at the end of an instruction can overlap the head cycle time for the following instruction, thus reducing overall execution time. Interlocks prevent the microsequencer from overwriting the buffer.

5.7.1.3.3Microbus Controller. The microbus controller performs bus cycles issued by the microsequencer. Operand accesses always have priority over instruction prefetches. Word and byte operands are accessed in a single CPU-initiated bus cycle, although the external bus interface may be required to initiate a second cycle when a word operand is sent to a byte-sized external port. Long operands are accessed in two bus cycles, most significant word first.

The instruction pipeline is capable of recognizing instructions that cause a change of flow. It informs the bus controller when a change of flow is imminent, and the bus controller refrains from starting prefetches that would be discarded due to the change of flow.

5.7.1.4INSTRUCTION EXECUTION OVERLAP. Overlap is the time, measured in clock cycles, that an instruction executes concurrently with the previous instruction. As shown in Figure 5-31, portions of instructions A and B execute simultaneously, reducing total execution time. Because portions of instructions B and C also overlap, overall execution time for all three instructions is also reduced.

Each instruction contributes to the total overlap time. The portion of execution time at the end of instruction A that can overlap the beginning of instruction B is called the tail of instruction A. The portion of execution time at the beginning of instruction B that can overlap the end of instruction A is called the head of instruction B. The total overlap time between instructions A and B is the smaller tail of A and the head of B.

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C

OVERLAP

OVERLAP

Figure 5-31. Simultaneous Instruction Execution

MOTOROLAMC68340 USER’S MANUAL5- 91

For More Information On This Product,

Go to: www.freescale.com

Page 228
Image 228
Motorola MC68340 manual Simultaneous Instruction Execution

MC68340 specifications

The Motorola MC68340 is a highly integrated microprocessor that was introduced in the early 1990s. It belongs to the 68000 family of microprocessors and is designed to cater to the demands of embedded systems, particularly in telecommunications and networking applications. This chip represents a significant evolution in microprocessor technology by combining a microprocessor core with additional peripherals on a single chip, making it an attractive solution for engineers looking to design compact and efficient systems.

One of the key features of the MC68340 is its 32-bit architecture, which allows for significant processing power and data handling capabilities. This architecture enables the processor to handle larger data sizes and perform more complex calculations compared to its 16-bit predecessors. The MC68340 operates at clock speeds typically ranging from 16 MHz to 25 MHz. Its dual instruction pipeline enhances throughput, allowing for simultaneous instruction fetches and executions, which significantly boosts performance.

A notable characteristic of the MC68340 is the inclusion of integrated peripherals, which help reduce the overall component count in a system. Key integrated components include a memory management unit (MMU), a direct memory access (DMA) controller, and various communication interfaces such as serial ports. The memory management capabilities enhance the processor's ability to manage memory resources efficiently, enabling it to support multitasking environments commonly found in modern computing.

In terms of connectivity, the MC68340 features connections for both synchronous and asynchronous serial communication, making it well-suited for networking tasks. The processor supports a range of bus standards, including address and data buses, which facilitate seamless interaction with peripheral devices.

Another important aspect of the MC68340 is its flexibility. The processor supports multiple operating modes, including multiple CPU configurations and compatibility with the Motorola 68000 family, allowing for easier integration into existing systems.

Moreover, the MC68340 boasts low power consumption compared to many of its contemporaries, making it an excellent choice for battery-operated applications, enhancing its appeal in sectors like telecommunications, industrial control, and automotive systems. Its combination of performance, integration, versatility, and efficiency has secured the MC68340 a reputable position in the annals of embedded systems technology, proving to be a valuable asset for developers and engineers alike.