Motorola MC68340 manual Freescale Semiconductor, Inc Breakpoint Acknowledge Cycle

Models: MC68340

1 441
Download 441 pages 2.45 Kb
Page 71
Image 71

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

3.4.1 Breakpoint Acknowledge Cycle

The breakpoint acknowledge cycle allows external hardware to insert an instruction directly into the instruction pipeline as the program executes. The breakpoint acknowledge cycle is generated by the execution of a breakpoint instruction (BKPT) or the assertion of the BKPT pin. The T-bit state (shown in Figure 3-10) differentiates a software breakpoint cycle (T = 0) from a hardware breakpoint cycle (T = 1).

When a BKPT instruction is executed (software breakpoint), the MC68340 performs a word read from CPU space, type 0, at an address corresponding to the breakpoint number (bits [2–0] of the BKPT opcode) on A4–A2, and the T-bit (A1) is cleared. If this bus cycle is terminated with BERR (i.e., no instruction word is available), the MC68340 then performs illegal instruction exception processing. If the bus cycle is terminated by DSACK, the MC68340 uses the data on D15–D0 (for 16-bit ports) or two reads from D15–D8 (for 8-bit ports) to replace the BKPT instruction in the internal instruction pipeline and then begins execution of that instruction.

When the CPU32 acknowledges a BKPT pin assertion (hardware breakpoint) with background mode disabled, the CPU32 performs a word read from CPU space, type 0, at an address corresponding to all ones on A4–A2 (BKPT#7), and the T-bit (A1) is set. If this bus cycle is terminated by BERR, the MC68340 performs hardware breakpoint exception processing. If this bus cycle is terminated by DSACK, the MC68340 ignores data on the data bus and continues execution of the next instruction.

NOTE

The BKPT pin is sampled on the same clock phase as data and is latched with data as it enters the CPU32 pipeline. If BKPT is asserted for only one bus cycle and a pipeline flush occurs before BKPT is detected by the CPU32, BKPT is ignored. To ensure detection of BKPT by the CPU32, BKPT can be asserted until a breakpoint acknowledge cycle is recognized.

The breakpoint operation flowchart is shown in Figure 3-11. Figures 3-12 and 3-13 show the timing diagrams for the breakpoint acknowledge cycle with instruction opcodes supplied on the cycle and with an exception signaled, respectively.

3- 22MC68340 USER’S MANUALMOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Page 71
Image 71
Motorola MC68340 manual Freescale Semiconductor, Inc Breakpoint Acknowledge Cycle

MC68340 specifications

The Motorola MC68340 is a highly integrated microprocessor that was introduced in the early 1990s. It belongs to the 68000 family of microprocessors and is designed to cater to the demands of embedded systems, particularly in telecommunications and networking applications. This chip represents a significant evolution in microprocessor technology by combining a microprocessor core with additional peripherals on a single chip, making it an attractive solution for engineers looking to design compact and efficient systems.

One of the key features of the MC68340 is its 32-bit architecture, which allows for significant processing power and data handling capabilities. This architecture enables the processor to handle larger data sizes and perform more complex calculations compared to its 16-bit predecessors. The MC68340 operates at clock speeds typically ranging from 16 MHz to 25 MHz. Its dual instruction pipeline enhances throughput, allowing for simultaneous instruction fetches and executions, which significantly boosts performance.

A notable characteristic of the MC68340 is the inclusion of integrated peripherals, which help reduce the overall component count in a system. Key integrated components include a memory management unit (MMU), a direct memory access (DMA) controller, and various communication interfaces such as serial ports. The memory management capabilities enhance the processor's ability to manage memory resources efficiently, enabling it to support multitasking environments commonly found in modern computing.

In terms of connectivity, the MC68340 features connections for both synchronous and asynchronous serial communication, making it well-suited for networking tasks. The processor supports a range of bus standards, including address and data buses, which facilitate seamless interaction with peripheral devices.

Another important aspect of the MC68340 is its flexibility. The processor supports multiple operating modes, including multiple CPU configurations and compatibility with the Motorola 68000 family, allowing for easier integration into existing systems.

Moreover, the MC68340 boasts low power consumption compared to many of its contemporaries, making it an excellent choice for battery-operated applications, enhancing its appeal in sectors like telecommunications, industrial control, and automotive systems. Its combination of performance, integration, versatility, and efficiency has secured the MC68340 a reputable position in the annals of embedded systems technology, proving to be a valuable asset for developers and engineers alike.