Motorola MC68340 manual Attributed Instruction Times

Models: MC68340

1 441
Download 441 pages 2.45 Kb
Page 229
Image 229

Freescale Semiconductor, Inc...

Freescale Semiconductor, Inc.

The execution time attributed to instructions A, B, and C after considering the overlap is illustrated in Figure 5-32. The overlap time is attributed to the execution time of the completing instruction. The following equation shows the method for calculating the overlap time:

Overlap = min (TailN, HeadN+1 )

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C

OVERLAP

OVERLAP

PERIOD

PERIOD

(ABSORBED BY

(ABSORBED BY

INSTRUCTION A)

INSTRUCTION B)

Figure 5-32. Attributed Instruction Times

5.7.1.5EFFECTS OF WAIT STATES. The CPU32 access time for on-chip peripherals is two clocks. While two-clock external accesses are possible when the bus is operated in a synchronous mode, a typical external memory speed is three or more clocks.

All instruction times listed in this section are for word access only (unless an explicit exception is given), and are based on the assumption that both instruction fetches and operand cycles are to a two-clock memory. Any time a long access is made, time for the additional bus cycle(s) must be added to the overall execution time. Wait states due to slow external memory must be added to the access time for each bus cycle.

A typical application has a mixture of bus speeds—program execution from an off-chip ROM, accesses to on-chip peripherals, storage of variables in slow off-chip RAM, and accesses to external peripherals with speeds ranging from moderate to very slow. To arrive at an accurate instruction time calculation, each bus access must be individually considered. Many instructions have a head cycle count, which can overlap the cycles of an operand fetch to slower memory started by a previous instruction. In these cases, an increase in access time has no effect on the total execution time of the pair of instructions.

To trace instruction execution time by monitoring the external bus, note that the order of operand accesses for a particular instruction sequence is always the same provided bus speed is unchanged and the interleaving of instruction prefetches with operands within each sequence is identical.

5.7.1.6INSTRUCTION EXECUTION TIME CALCULATION. The overall execution time for an instruction depends on the amount of overlap with previous and subsequent instructions. To calculate an instruction time estimate, the entire code sequence must be

5- 92MC68340 USER’S MANUALMOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Page 229
Image 229
Motorola MC68340 manual Attributed Instruction Times

MC68340 specifications

The Motorola MC68340 is a highly integrated microprocessor that was introduced in the early 1990s. It belongs to the 68000 family of microprocessors and is designed to cater to the demands of embedded systems, particularly in telecommunications and networking applications. This chip represents a significant evolution in microprocessor technology by combining a microprocessor core with additional peripherals on a single chip, making it an attractive solution for engineers looking to design compact and efficient systems.

One of the key features of the MC68340 is its 32-bit architecture, which allows for significant processing power and data handling capabilities. This architecture enables the processor to handle larger data sizes and perform more complex calculations compared to its 16-bit predecessors. The MC68340 operates at clock speeds typically ranging from 16 MHz to 25 MHz. Its dual instruction pipeline enhances throughput, allowing for simultaneous instruction fetches and executions, which significantly boosts performance.

A notable characteristic of the MC68340 is the inclusion of integrated peripherals, which help reduce the overall component count in a system. Key integrated components include a memory management unit (MMU), a direct memory access (DMA) controller, and various communication interfaces such as serial ports. The memory management capabilities enhance the processor's ability to manage memory resources efficiently, enabling it to support multitasking environments commonly found in modern computing.

In terms of connectivity, the MC68340 features connections for both synchronous and asynchronous serial communication, making it well-suited for networking tasks. The processor supports a range of bus standards, including address and data buses, which facilitate seamless interaction with peripheral devices.

Another important aspect of the MC68340 is its flexibility. The processor supports multiple operating modes, including multiple CPU configurations and compatibility with the Motorola 68000 family, allowing for easier integration into existing systems.

Moreover, the MC68340 boasts low power consumption compared to many of its contemporaries, making it an excellent choice for battery-operated applications, enhancing its appeal in sectors like telecommunications, industrial control, and automotive systems. Its combination of performance, integration, versatility, and efficiency has secured the MC68340 a reputable position in the annals of embedded systems technology, proving to be a valuable asset for developers and engineers alike.