Motorola MC68340 manual Serial Interface Timing Diagram

Models: MC68340

1 441
Download 441 pages 2.45 Kb
Page 208
Image 208

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

CLKOUT

FREEZE

DSCLK

DSI

SAMPLE

WINDOW

INTERNAL

SYNCHRONIZED

DSCLK

INTERNAL

SYNCHRONIZED

DSI

DSO.

CLKOUT

Figure 5-23. Serial Interface Timing Diagram

A user can use the state change on DSO to signal hardware that the next serial transfer may begin. A timeout of sufficient length to trap error conditions that do not change the state of DSO should also be incorporated into the design. Hardware interlocks in the CPU prevent result data from corrupting serial transfers in progress.

5.6.2.7.2Development System Serial Logic. The development system, as the master of the serial data link, must supply the serial clock. However, normal and BDM operations could interact if the clock generator is not properly designed.

Breakpoint requests are made by asserting BKPT to the low state in either of two ways. The primary method is to assert BKPT during a single bus cycle for which an exception is desired. Another method is to assert BKPT, then continue to assert it until the CPU32 responds by asserting FREEZE. This method is useful for forcing a transition into BDM when the bus is not being monitored. Each method requires a slightly different serial logic design to avoid spurious serial clocks.

Figure 5-24 represents the timing required for asserting BKPT during a single bus cycle.

MOTOROLAMC68340 USER’S MANUAL5- 71

For More Information On This Product,

Go to: www.freescale.com

Page 208
Image 208
Motorola MC68340 manual Serial Interface Timing Diagram

MC68340 specifications

The Motorola MC68340 is a highly integrated microprocessor that was introduced in the early 1990s. It belongs to the 68000 family of microprocessors and is designed to cater to the demands of embedded systems, particularly in telecommunications and networking applications. This chip represents a significant evolution in microprocessor technology by combining a microprocessor core with additional peripherals on a single chip, making it an attractive solution for engineers looking to design compact and efficient systems.

One of the key features of the MC68340 is its 32-bit architecture, which allows for significant processing power and data handling capabilities. This architecture enables the processor to handle larger data sizes and perform more complex calculations compared to its 16-bit predecessors. The MC68340 operates at clock speeds typically ranging from 16 MHz to 25 MHz. Its dual instruction pipeline enhances throughput, allowing for simultaneous instruction fetches and executions, which significantly boosts performance.

A notable characteristic of the MC68340 is the inclusion of integrated peripherals, which help reduce the overall component count in a system. Key integrated components include a memory management unit (MMU), a direct memory access (DMA) controller, and various communication interfaces such as serial ports. The memory management capabilities enhance the processor's ability to manage memory resources efficiently, enabling it to support multitasking environments commonly found in modern computing.

In terms of connectivity, the MC68340 features connections for both synchronous and asynchronous serial communication, making it well-suited for networking tasks. The processor supports a range of bus standards, including address and data buses, which facilitate seamless interaction with peripheral devices.

Another important aspect of the MC68340 is its flexibility. The processor supports multiple operating modes, including multiple CPU configurations and compatibility with the Motorola 68000 family, allowing for easier integration into existing systems.

Moreover, the MC68340 boasts low power consumption compared to many of its contemporaries, making it an excellent choice for battery-operated applications, enhancing its appeal in sectors like telecommunications, industrial control, and automotive systems. Its combination of performance, integration, versatility, and efficiency has secured the MC68340 a reputable position in the annals of embedded systems technology, proving to be a valuable asset for developers and engineers alike.