Analog-to-Digital Converter (S08ADC12V1)

11.6.1.1Analog Supply Pins

The ADC module has analog power and ground supplies (VDDAD and VSSAD) available as separate pins on some devices. VSSAD is shared on the same pin as the MCU digital VSS on some devices. On other devices, VSSAD and VDDAD are shared with the MCU digital supply pins. In these cases, there are separate pads for the analog supplies bonded to the same pin as the corresponding digital supply so that some degree of isolation between the supplies is maintained.

When available on a separate pin, both VDDAD and VSSAD must be connected to the same voltage potential as their corresponding MCU digital supply (VDD and VSS) and must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

If separate power supplies are used for analog and digital power, the ground connection between these supplies must be at the VSSAD pin. This should be the only ground connection between these supplies if possible. The VSSAD pin makes a good single point ground location.

11.6.1.2Analog Reference Pins

In addition to the analog supplies, the ADC module has connections for two reference voltage inputs. The high reference is VREFH, which may be shared on the same pin as VDDAD on some devices. The low reference is VREFL, which may be shared on the same pin as VSSAD on some devices.

When available on a separate pin, VREFH may be connected to the same potential as VDDAD, or may be driven by an external source between the minimum VDDAD spec and the VDDAD potential (VREFH must never exceed VDDAD). When available on a separate pin, VREFL must be connected to the same voltage potential as VSSAD. VREFH and VREFL must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

AC current in the form of current spikes required to supply charge to the capacitor array at each successive approximation step is drawn through the VREFH and VREFL loop. The best external component to meet this current demand is a 0.1 μF capacitor with good high frequency characteristics. This capacitor is connected between VREFH and VREFL and must be placed as near as possible to the package pins. Resistance in the path is not recommended because the current causes a voltage drop that could result in conversion errors. Inductance in this path must be minimum (parasitic only).

11.6.1.3Analog Input Pins

The external analog inputs are typically shared with digital I/O pins on MCU devices. The pin I/O control is disabled by setting the appropriate control bit in one of the pin control registers. Conversions can be performed on inputs without the associated pin control register bit set. It is recommended that the pin control register bit always be set when using a pin as an analog input. This avoids problems with contention because the output buffer is in its high impedance state and the pullup is disabled. Also, the input buffer draws DC current when its input is not at VDD or VSS. Setting the pin control register bits for all pins used as analog inputs should be done to achieve lowest operating current.

Empirical data shows that capacitors on the analog inputs improve performance in the presence of noise or when the source impedance is high. Use of 0.01 μF capacitors with good high-frequency characteristics is sufficient. These capacitors are not necessary in all cases, but when used they must be placed as near as possible to the package pins and be referenced to VSSA.

MCF51QE128 MCU Series Reference Manual, Rev. 3

Freescale Semiconductor

237

Get the latest version from freescale.com

Page 237
Image 237
Freescale Semiconductor MCF51QE128RM manual Analog Supply Pins, Analog Reference Pins, Analog Input Pins