Biphase-Mark and Biphase- Space encoding

IRDA-compliant encode

S E R I A L C O N T RO L M O D U L E : H D L C

. .

 

Normal mode operation..

 

.

only uses the clock transitions to track the bit-cell boundaries, by ignoring all transitions occurring outside a window around the center of the bit-cell. The window is half a bit-cell wide.

Because the clock transitions are guaranteed, the DPLL requires that they always be present. If no transition is found in the window around the center of the bit-cell for two successive bit-cells, the DPLL is not in lock and immediately enters search mode. Search mode presumes that the next transition seen is a clock transition and immediately synchronizes to this transition. No clock output is provided to the receiver during the search operation.

Biphase-mark and biphase-space encoding are identical per the DPLL and are similar to biphase-level. The primary difference is the clock placement and data transitions. With these encodings, the clock transitions are at the bit-cell boundary and the data transitions are at the center of the bit-cell; the DPLL operation is adjusted accordingly. Decoding biphase-mark or biphase-space encoding requires that the data be sampled by both edges of the recovered receive clock.

There is an optional IRDA-compliant encode and decode function available. The encoder sends an active-high pulse for a zero and no pulse for a one. The pulse is 1/4th of a bit-cell wide. The decoder watches for active-low pulses which are stretched to one bit time wide to recreate the normal asynchronous waveform for the receiver. enabling the IRDA-compliant encode/decode modifies the transmitter so there are always two opening flags transmitted.

N o r m a l m o d e o p e r a t i o n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example configuration

The HDLC achieves normal mode operation by programming the HDLC and Wrapper configuration registers.

This example shows a normal mode operation configuration for a typical application. Any field not specified in this table can be left at reset value.

Control register

Field

Value

Comment

 

 

 

 

HDLC Control register

CLK

0x3

Enable internal clock generation

 

 

 

 

 

 

 

 

HDLC Clock Divider High

EN

0x1

Enable the internal clock divider; the

 

 

 

clock rate will be 1.8432 Mbps.

 

 

 

 

www.digiembedded.com

421

Page 421
Image 421
Digi NS9215 manual R m a l m o d e o p e r a t i o n, Clk

NS9215 specifications

The Digi NS9215 is a powerful solution designed for industrial applications that require reliable connectivity and robust performance. Built on a foundation of advanced technologies, the NS9215 serves as a versatile networking device that meets the demands of automation, remote monitoring, and data acquisition.

One of the standout features of the Digi NS9215 is its multi-protocol support. It is capable of handling various communication protocols, including Ethernet, Serial, and Wireless, making it ideal for integration into heterogeneous environments. This flexibility enables users to connect legacy devices to modern networks seamlessly, facilitating smoother data communication across different platforms.

The NS9215 is equipped with powerful processing capabilities, featuring an integrated processor that ensures efficient data handling. This enables the device to perform complex data tasks without compromising performance. Its high-speed connectivity options also allow for rapid data transmission, which is crucial for real-time applications in industrial settings.

Another critical characteristic of the Digi NS9215 is its reliability in harsh environments. Built to withstand extreme temperatures, humidity, and electrical interference, this device assures consistent operation even in challenging conditions. Its rugged design minimizes the risk of failure, making it suitable for deployment in various industrial environments.

Security is a top priority for the Digi NS9215. It comes with advanced security features that protect sensitive data during transmission and prevent unauthorized access. Employing encryption protocols and secure authentication methods, the NS9215 ensures that data integrity and confidentiality are maintained throughout its operation.

The user-friendly interface of the NS9215 allows for easy configuration and management. This ease of use reduces the time required for installation and setup, enabling quick deployment in field operations. Additionally, remote management capabilities enhance operational efficiency, allowing users to monitor device performance and make adjustments from anywhere.

Furthermore, the NS9215 supports extensive scalability options. As organizations grow and evolve, the ability to scale up or adapt the networking capabilities becomes essential. With its modular design, the NS9215 can easily accommodate additional devices and protocols, ensuring longevity and continued relevance in a rapidly changing technological landscape.

In conclusion, the Digi NS9215 is a robust networking device designed for a wide range of industrial applications. Its multi-protocol support, reliability, security features, user-friendly interface, and scalability make it a valuable addition to any industrial network infrastructure, delivering performance and efficiency that businesses can depend on for critical operations.