Programmable enable

M E M O R Y C O N T RO L L E R

Static memory read control

“Static Memory Extended Wait register” on page 247 (StaticExtendedWait)

The number of cycles in which an AMBA transfer completes is controlled by two additional factors:

Access width

External memory width

Each bank of the memory controller has a programmable enable for the extended wait (EW). The WAITRD wait state field in the Static Memory Read Delay register can be programmed to select from 1–32 wait states for read memory accesses to SRAM and ROM, or the initial read access to page mode devices. The WAITWR wait state field in the Static Memory Write Delay register can be programmed to select from 1– 32 wait states for access to SRAM. The Static Memory Page Mode Read Delay register can be programmed to select from 1–32 wait states for page mode accesses.

S t a t i c m e m o r y r e a d c o n t r o l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output enable programmable delay

There are three types of static memory read controls:

Output enable programmable delay

ROM, SRAM, and flash

Asynchronous page mode read

The delay between the assertion of the chip select and the output enable is programmable from 0 to 15 cycles using the wait output enable bits (WAITOEN) in the Static Memory Output Enable Delay registers. The delay is used to reduce power consumption for memories that cannot provide valid output data immediately after the chip select has been asserted. The output enable is always deasserted at the same time as the chip select, at the end of the transfer.

ROM, SRAM, and Flash

The memory controller uses the same read timing control for ROM, SRAM, and flash devices. Each read starts with the assertion of the appropriate memory bank chip select signals (cs_n) and memory address (addr[27:0]). The read access time is determined by the number of wait states programmed for the WAITRD field in the Static Memory Read Delay register. The WAITTURN field in the Static Memory Turn Round Delay register determines the number of bus turnaround wait states added between external read and write transfers.

210Hardware Reference NS9215

Page 210
Image 210
Digi NS9215 manual A t i c m e m o r y r e a d c o n t r o l, Programmable enable, Output enable programmable delay

NS9215 specifications

The Digi NS9215 is a powerful solution designed for industrial applications that require reliable connectivity and robust performance. Built on a foundation of advanced technologies, the NS9215 serves as a versatile networking device that meets the demands of automation, remote monitoring, and data acquisition.

One of the standout features of the Digi NS9215 is its multi-protocol support. It is capable of handling various communication protocols, including Ethernet, Serial, and Wireless, making it ideal for integration into heterogeneous environments. This flexibility enables users to connect legacy devices to modern networks seamlessly, facilitating smoother data communication across different platforms.

The NS9215 is equipped with powerful processing capabilities, featuring an integrated processor that ensures efficient data handling. This enables the device to perform complex data tasks without compromising performance. Its high-speed connectivity options also allow for rapid data transmission, which is crucial for real-time applications in industrial settings.

Another critical characteristic of the Digi NS9215 is its reliability in harsh environments. Built to withstand extreme temperatures, humidity, and electrical interference, this device assures consistent operation even in challenging conditions. Its rugged design minimizes the risk of failure, making it suitable for deployment in various industrial environments.

Security is a top priority for the Digi NS9215. It comes with advanced security features that protect sensitive data during transmission and prevent unauthorized access. Employing encryption protocols and secure authentication methods, the NS9215 ensures that data integrity and confidentiality are maintained throughout its operation.

The user-friendly interface of the NS9215 allows for easy configuration and management. This ease of use reduces the time required for installation and setup, enabling quick deployment in field operations. Additionally, remote management capabilities enhance operational efficiency, allowing users to monitor device performance and make adjustments from anywhere.

Furthermore, the NS9215 supports extensive scalability options. As organizations grow and evolve, the ability to scale up or adapt the networking capabilities becomes essential. With its modular design, the NS9215 can easily accommodate additional devices and protocols, ensuring longevity and continued relevance in a rapidly changing technological landscape.

In conclusion, the Digi NS9215 is a robust networking device designed for a wide range of industrial applications. Its multi-protocol support, reliability, security features, user-friendly interface, and scalability make it a valuable addition to any industrial network infrastructure, delivering performance and efficiency that businesses can depend on for critical operations.