WO R K I N G W I T H T H E C P U

Noncachable instruction fetches

AHB behavior

Instruction Memory Barrier

If instruction prefetching is disabled, all instruction fetches appear on the AHB interface as single, nonsequential fetches.

If prefetching is enabled, instruction fetches appear either as bursts of four instructions or as single, nonsequential fetches. No speculative instruction fetching is done across a 1 KB boundary.

All instruction fetches, including those made in Thumb state, are word transfers (32 bits). In Thumb state, a single-word instruction fetch reads two Thumb instructions and a four-word burst reads eight instructions.

Whenever code is treated as data — for example, self-modifying code or loading code into memory — a sequence of instructions called an instruction memory barrier (IMB) operation must be used to ensure consistency between the data and instruction streams processed by the ARM926EJ-S processor.

Usually the instruction and data streams are considered to be completely independent by the ARM926EJ-S processor memory system, and any changes in the data side are not automatically reflected in the instruction side. For example, if code is modified in main memory, ICache may contain stale entries. To remove these stale entries, part of all of the ICache must be invalidated.

IMB operation Use this procedure to ensure consistency between data and instruction sides:

1Clean the DCache. If the cache contains cache lines corresponding to write-back regions of memory, it might contain dirty entries. These entries must be cleaned to make external memory consistent with the DCache. If only a small part of the cache has to be cleaned, it can be done by using a sequence of clean DCache single entry instructions. If the entire cache has to be cleaned, you can use the test and clean operation (see "R7:Cache Operations register," beginning on page 94).

2Drain the write buffer. Executing a drain write buffer causes the ARM926EJ-S core to wait until outstanding buffered writes have completed on the AHB interface. This includes writes that occur as a result of data being written back to main memory because of clean operations, and data for store instructions.

3Synchronize data and instruction streams in level two AHB systems. The level two AHB subsystem might require synchronization between data and instruction sides. It is possible for the data and instruction AHB masters to be attached to different AHB subsystems. Even if both masters are present on the same bus, some form of separate ICache might exist for performance reasons; this must be invalidated to ensure consistency.

The process of synchronizing instructions and data in level two memory must be invoked using some form of fully blocking operation, to ensure that the end of the operation can be determined using software. It is

134Hardware Reference NS9215

Page 134
Image 134
Digi NS9215 manual AHB behavior Instruction Memory Barrier

NS9215 specifications

The Digi NS9215 is a powerful solution designed for industrial applications that require reliable connectivity and robust performance. Built on a foundation of advanced technologies, the NS9215 serves as a versatile networking device that meets the demands of automation, remote monitoring, and data acquisition.

One of the standout features of the Digi NS9215 is its multi-protocol support. It is capable of handling various communication protocols, including Ethernet, Serial, and Wireless, making it ideal for integration into heterogeneous environments. This flexibility enables users to connect legacy devices to modern networks seamlessly, facilitating smoother data communication across different platforms.

The NS9215 is equipped with powerful processing capabilities, featuring an integrated processor that ensures efficient data handling. This enables the device to perform complex data tasks without compromising performance. Its high-speed connectivity options also allow for rapid data transmission, which is crucial for real-time applications in industrial settings.

Another critical characteristic of the Digi NS9215 is its reliability in harsh environments. Built to withstand extreme temperatures, humidity, and electrical interference, this device assures consistent operation even in challenging conditions. Its rugged design minimizes the risk of failure, making it suitable for deployment in various industrial environments.

Security is a top priority for the Digi NS9215. It comes with advanced security features that protect sensitive data during transmission and prevent unauthorized access. Employing encryption protocols and secure authentication methods, the NS9215 ensures that data integrity and confidentiality are maintained throughout its operation.

The user-friendly interface of the NS9215 allows for easy configuration and management. This ease of use reduces the time required for installation and setup, enabling quick deployment in field operations. Additionally, remote management capabilities enhance operational efficiency, allowing users to monitor device performance and make adjustments from anywhere.

Furthermore, the NS9215 supports extensive scalability options. As organizations grow and evolve, the ability to scale up or adapt the networking capabilities becomes essential. With its modular design, the NS9215 can easily accommodate additional devices and protocols, ensuring longevity and continued relevance in a rapidly changing technological landscape.

In conclusion, the Digi NS9215 is a robust networking device designed for a wide range of industrial applications. Its multi-protocol support, reliability, security features, user-friendly interface, and scalability make it a valuable addition to any industrial network infrastructure, delivering performance and efficiency that businesses can depend on for critical operations.