R

Chapter 9

PAR

The Place and Route (PAR) program is compatible with the following families:

Virtex, Virtex-E

Virtex-II

Virtex-II Pro, Virtex-II Pro X

Virtex-4

Virtex-5 LX

Spartan-II, Spartan-IIE

Spartan-3, Spartan-3E, Spartan-3L The chapter contains the following sections:

“Place and Route Overview”

“PAR Process”

“Guided PAR”

“PAR Syntax”

“PAR Input Files”

“PAR Output Files”

“PAR Options”

“PAR Reports”

“Multi Pass Place and Route (MPPR)”

“Xplorer”

“ReportGen”

“Turns Engine (PAR Multi-Tasking Option)”

“Halting PAR”

Place and Route Overview

After you create a Native Circuit Description (NCD) file with the MAP program, you can place and route that design file using PAR. PAR accepts a mapped NCD file as input, places and routes the design, and outputs an NCD file to be used by the bitstream generator (BitGen). See Chapter 14, “BitGen”.

The NCD file output by PAR can also be used as a guide file for additional runs of PAR that may be done after making minor changes to your design. See the “Guided PAR” section of this chapter for more information on using guide files.

Development System Reference Guide

www.xilinx.com

159

Page 159
Image 159
Xilinx 8.2i manual Par, Place and Route Overview

8.2i specifications

Xilinx 8.2i is a significant version of the Xilinx ISE (Integrated Software Environment) that emerged in the early 2000s, marking an important milestone in the world of FPGA (Field-Programmable Gate Array) development. This version introduced a slew of advanced features, technologies, and characteristics that made it an indispensable tool for engineers and developers in designing, simulating, and implementing digital circuits.

One of the standout features of Xilinx 8.2i is its enhanced design entry capabilities. This version supports multiple design entry methods, including schematic entry, VHDL, and Verilog HDL, giving engineers the flexibility to choose their preferred approach. The integrated environment provides user-friendly graphical interfaces, making it accessible for both novice and experienced users.

Xilinx 8.2i's synthesis tools have been improved to enable more efficient design compilation and optimization. The new algorithms used in this version facilitate faster synthesis times while reducing power consumption and improving performance. Furthermore, it features support for advanced FPGA architectures, which allows for the implementation of more complex designs with greater efficiency.

The implementation tools in Xilinx 8.2i include advanced place and route capabilities, utilizing state-of-the-art algorithms for optimized resource usage. These tools enable designers to make better use of FPGA resources, ensuring that designs fit within the constraints of the target device while maximizing performance.

Another key characteristic of Xilinx 8.2i is its extensive support for various Xilinx devices such as the Spartan, Virtex, and CoolRunner series. This compatibility ensures that developers can leverage the powerful features of these FPGA families, including high-speed transceivers and DSP slices.

Xilinx 8.2i also places a strong emphasis on simulation and verification. The version integrates with various simulation tools, allowing for thorough testing of the designs before implementation. This reduces the risk of errors and ensures that the final product meets specifications.

In addition, this version includes support for design constraints, enabling engineers to specify timing, area, and other critical design parameters. By accommodating constraints, Xilinx 8.2i helps in achieving reliable and efficient designs tailored to project needs.

In summary, Xilinx 8.2i is a robust software development tool that enhances the design process for FPGAs. Its comprehensive features, including multiple design entry options, advanced synthesis and implementation tools, extensive device support, and strong simulation capabilities, make it a valuable resource for engineers and developers striving for innovation in digital design.