R

Chapter 15

BSDLAnno

BSDLAnno is compatible with the following families:

Virtex, Virtex-E

Virtex-II

Virtex-II Pro, Virtex-II Pro X

Virtex-4

Virtex-5 LX

Spartan-II, Spartan-IIE

Spartan-3, Spartan-3E, Spartan-3L

CoolRunnerXPLA3, CoolRunner-II

XC9500, XC9500XL, XC9500XV

This chapter contains the following sections:

“BSDLAnno Overview”

“BSDLAnno Syntax”

“BSDLAnno Input Files”

“BSDLAnno Output Files”

“BSDLAnno Options”

“BSDLAnno File Composition”

“Boundary Scan Behavior in Xilinx Devices”

BSDLAnno Overview

The Boundary Scan Description Language (BSDLAnno) utility automatically modifies a BSDL file for post-configuration interconnect testing. BSDLAnno obtains the necessary design information from the routed .ncd file (FPGAs) or the design.pnx file (CPLDs), and generates a BSDL file that reflects the post-configuration boundary scan architecture of the device. The boundary scan architecture is changed when the device is configured because certain connections between the boundary scan registers and pad may change. These changes must be communicated to the boundary scan tester through a post-configuration BSDL file. If the changes to the boundary scan architecture are not reflected in the BSDL file, boundary scan tests may fail.

The Boundary Scan Description Language is defined by IEEE specification 1149.1 as “a common way of defining device boundary scan architecture.” Xilinx provides both 1149.1 and 1532 BSDL files that describe pre-configuration boundary scan architecture.

Development System Reference Guide

www.xilinx.com

277

Page 277
Image 277
Xilinx 8.2i manual BSDLAnno Overview

8.2i specifications

Xilinx 8.2i is a significant version of the Xilinx ISE (Integrated Software Environment) that emerged in the early 2000s, marking an important milestone in the world of FPGA (Field-Programmable Gate Array) development. This version introduced a slew of advanced features, technologies, and characteristics that made it an indispensable tool for engineers and developers in designing, simulating, and implementing digital circuits.

One of the standout features of Xilinx 8.2i is its enhanced design entry capabilities. This version supports multiple design entry methods, including schematic entry, VHDL, and Verilog HDL, giving engineers the flexibility to choose their preferred approach. The integrated environment provides user-friendly graphical interfaces, making it accessible for both novice and experienced users.

Xilinx 8.2i's synthesis tools have been improved to enable more efficient design compilation and optimization. The new algorithms used in this version facilitate faster synthesis times while reducing power consumption and improving performance. Furthermore, it features support for advanced FPGA architectures, which allows for the implementation of more complex designs with greater efficiency.

The implementation tools in Xilinx 8.2i include advanced place and route capabilities, utilizing state-of-the-art algorithms for optimized resource usage. These tools enable designers to make better use of FPGA resources, ensuring that designs fit within the constraints of the target device while maximizing performance.

Another key characteristic of Xilinx 8.2i is its extensive support for various Xilinx devices such as the Spartan, Virtex, and CoolRunner series. This compatibility ensures that developers can leverage the powerful features of these FPGA families, including high-speed transceivers and DSP slices.

Xilinx 8.2i also places a strong emphasis on simulation and verification. The version integrates with various simulation tools, allowing for thorough testing of the designs before implementation. This reduces the risk of errors and ensures that the final product meets specifications.

In addition, this version includes support for design constraints, enabling engineers to specify timing, area, and other critical design parameters. By accommodating constraints, Xilinx 8.2i helps in achieving reliable and efficient designs tailored to project needs.

In summary, Xilinx 8.2i is a robust software development tool that enhances the design process for FPGAs. Its comprehensive features, including multiple design entry options, advanced synthesis and implementation tools, extensive device support, and strong simulation capabilities, make it a valuable resource for engineers and developers striving for innovation in digital design.