R

oscillator

An oscillator is a bi-stable circuit that can be used as a clock. The stable states are 0 and 1.

P

package

A package is the physical packaging of a chip, for example, PG84,

VQ100, and PC48.

pad

A pad is the physical bonding pad on an integrated circuit. All signals on a chip must enter and leave by way of a pad. Pads are connected to package pins in order for signals to enter or leave an integrated circuit package.

PAL

A PAL is a programmable logic device that consists of a programmable AND matrix whose outputs drive fixed OR gates. This was one of the earliest forms of programmable logic. PALs can typically implement small functions easily (up to a hundred gates) and run very fast, but they are inefficient for large functions.

Parallel Cable III

Parallel Cable III is a cable assembly which contains a buffer to protect your PCs parallel port and a set of headers to connect to your target system.

partial reconfiguration

Partial Reconfiguration refers to a portion of an FPGA design being reconfigured while the remainder of the design is still operational.

Partition

A Partition is design unit placed on an instance in a design to enable design preservation.

path

A path is a connected series of nets and logic elements. A path has a start point and an end point that are different depending on the type of path. The time taken for a signal to propagate through a path is referred to as the path delay.

path delay

Path delay is the time it takes for a signal to propagate through a path.

Development System Reference Guide

www.xilinx.com

413

Page 413
Image 413
Xilinx 8.2i manual Pal

8.2i specifications

Xilinx 8.2i is a significant version of the Xilinx ISE (Integrated Software Environment) that emerged in the early 2000s, marking an important milestone in the world of FPGA (Field-Programmable Gate Array) development. This version introduced a slew of advanced features, technologies, and characteristics that made it an indispensable tool for engineers and developers in designing, simulating, and implementing digital circuits.

One of the standout features of Xilinx 8.2i is its enhanced design entry capabilities. This version supports multiple design entry methods, including schematic entry, VHDL, and Verilog HDL, giving engineers the flexibility to choose their preferred approach. The integrated environment provides user-friendly graphical interfaces, making it accessible for both novice and experienced users.

Xilinx 8.2i's synthesis tools have been improved to enable more efficient design compilation and optimization. The new algorithms used in this version facilitate faster synthesis times while reducing power consumption and improving performance. Furthermore, it features support for advanced FPGA architectures, which allows for the implementation of more complex designs with greater efficiency.

The implementation tools in Xilinx 8.2i include advanced place and route capabilities, utilizing state-of-the-art algorithms for optimized resource usage. These tools enable designers to make better use of FPGA resources, ensuring that designs fit within the constraints of the target device while maximizing performance.

Another key characteristic of Xilinx 8.2i is its extensive support for various Xilinx devices such as the Spartan, Virtex, and CoolRunner series. This compatibility ensures that developers can leverage the powerful features of these FPGA families, including high-speed transceivers and DSP slices.

Xilinx 8.2i also places a strong emphasis on simulation and verification. The version integrates with various simulation tools, allowing for thorough testing of the designs before implementation. This reduces the risk of errors and ensures that the final product meets specifications.

In addition, this version includes support for design constraints, enabling engineers to specify timing, area, and other critical design parameters. By accommodating constraints, Xilinx 8.2i helps in achieving reliable and efficient designs tailored to project needs.

In summary, Xilinx 8.2i is a robust software development tool that enhances the design process for FPGAs. Its comprehensive features, including multiple design entry options, advanced synthesis and implementation tools, extensive device support, and strong simulation capabilities, make it a valuable resource for engineers and developers striving for innovation in digital design.