R

Design Verification

Timing Simulation

Timing simulation verifies that your design runs at the desired speed for your device under worst-case conditions. This process is performed after your design is mapped, placed, and routed for FPGAs or fitted for CPLDs. At this time, all design delays are known.

Timing simulation is valuable because it can verify timing relationships and determine the critical paths for the design under worst-case conditions. It can also determine whether or not the design contains set-up or hold violations.

Before you can simulate your design, you must go through the back-annotation process, as described in “Back-Annotation”. During this process, NetGen creates suitable formats for various simulators.

Note: Naming the nets during your design entry is important for both functional and timing simulation. This allows you to find the nets in the simulations more easily than looking for a software- generated name.

HDL-Based Simulation

Xilinx supports functional and timing simulation of HDL designs at the following points:

Register Transfer Level (RTL) simulation, which may include the following:

Instantiated UniSim library components

LogiCORE models

Post-synthesis functional simulation with one of the following:

Gate-level UniSim library components

Gate-level pre-route SimPrim library components

Post-implementation back-annotated timing simulation with the following:

SimPrim library components

Standard delay format (SDF) file

Development System Reference Guide

www.xilinx.com

45

Page 45
Image 45
Xilinx 8.2i manual HDL-Based Simulation, Timing Simulation

8.2i specifications

Xilinx 8.2i is a significant version of the Xilinx ISE (Integrated Software Environment) that emerged in the early 2000s, marking an important milestone in the world of FPGA (Field-Programmable Gate Array) development. This version introduced a slew of advanced features, technologies, and characteristics that made it an indispensable tool for engineers and developers in designing, simulating, and implementing digital circuits.

One of the standout features of Xilinx 8.2i is its enhanced design entry capabilities. This version supports multiple design entry methods, including schematic entry, VHDL, and Verilog HDL, giving engineers the flexibility to choose their preferred approach. The integrated environment provides user-friendly graphical interfaces, making it accessible for both novice and experienced users.

Xilinx 8.2i's synthesis tools have been improved to enable more efficient design compilation and optimization. The new algorithms used in this version facilitate faster synthesis times while reducing power consumption and improving performance. Furthermore, it features support for advanced FPGA architectures, which allows for the implementation of more complex designs with greater efficiency.

The implementation tools in Xilinx 8.2i include advanced place and route capabilities, utilizing state-of-the-art algorithms for optimized resource usage. These tools enable designers to make better use of FPGA resources, ensuring that designs fit within the constraints of the target device while maximizing performance.

Another key characteristic of Xilinx 8.2i is its extensive support for various Xilinx devices such as the Spartan, Virtex, and CoolRunner series. This compatibility ensures that developers can leverage the powerful features of these FPGA families, including high-speed transceivers and DSP slices.

Xilinx 8.2i also places a strong emphasis on simulation and verification. The version integrates with various simulation tools, allowing for thorough testing of the designs before implementation. This reduces the risk of errors and ensures that the final product meets specifications.

In addition, this version includes support for design constraints, enabling engineers to specify timing, area, and other critical design parameters. By accommodating constraints, Xilinx 8.2i helps in achieving reliable and efficient designs tailored to project needs.

In summary, Xilinx 8.2i is a robust software development tool that enhances the design process for FPGAs. Its comprehensive features, including multiple design entry options, advanced synthesis and implementation tools, extensive device support, and strong simulation capabilities, make it a valuable resource for engineers and developers striving for innovation in digital design.