Xilinx 8.2i manual Static Timing Analysis FPGAs Only

Models: 8.2i

1 422
Download 422 pages 26.35 Kb
Page 47
Image 47

R

Design Verification

The libraries required to support the simulation flows are described in detail in the “VHDL/Verilog Libraries and Models” section of the Synthesis and Simulation Design Guide. The flows and libraries support close functional equivalence of initialization behavior between functional and timing simulations. This is due to the addition of new methodologies and library cells to simulate Global Set/Reset (GSR) and Global 3-State (GTS) behavior.

You must address the built-in reset circuitry behavior in your designs, starting with the first simulation, to ensure that the simulations agree at the three primary points. If you do not simulate GSR behavior prior to synthesis and place and route, your RTL and post-synthesis simulations may not initialize to the same state as your post-route timing simulation. If this occurs, your various design descriptions are not functionally equivalent and your simulation results do not match.

In addition to the behavioral representation for GSR, you must add a Xilinx implementation directive. This directive is specifies to the place and route tools to use the special purpose GSR net that is pre-routed on the chip, and not to use the local asynchronous set/reset pins. Some synthesis tools can identify the GSR net from the behavioral description, and place the STARTUP module on the net to direct the implementation tools to use the global network. However, other synthesis tools interpret behavioral descriptions literally and introduce additional logic into your design to implement a function. Without specific instructions to use device global networks, the Xilinx implementation tools use general-purpose logic and interconnect resources to redundantly build functions already provided by the silicon.

Even if GSR behavior is not described, the chip initializes during configuration, and the post-route netlist has a net that must be driven during simulation. The “Understanding the Global Signals for Simulation” section of the Synthesis and Simulation Design Guide includes the methodology to describe this behavior, as well as the GTS behavior for output buffers.

Xilinx VHDL simulation supports the VITAL standard. This standard allows you to simulate with any VITAL-compliant simulator. Built-in Verilog support allows you to simulate with the Cadence Verilog-XL and other compatible simulators. Xilinx HDL simulation supports all current Xilinx FPGA and CPLD devices. Refer to the Synthesis and Simulation Design Guide for the list of supported VHDL and Verilog standards.

Static Timing Analysis (FPGAs Only)

Static timing analysis is best for quick timing checks of a design after it is placed and routed. It also allows you to determine path delays in your design. Following are the two major goals of static timing analysis:

Timing verification

This is verifying that the design meets your timing constraints.

Reporting

This is enumerating input constraint violations and placing them into an accessible file. You can analyze partially or completely placed and routed designs. The timing information depends on the placement and routing of the input design.

You can run static timing analysis using the Timing Reporter and Circuit Evaluator (TRACE) command line program. See Chapter 12, “TRACE” for detailed information. You can also use the Timing Analyzer GUI to perform this function. See the online Help provided with the Timing Analyzer for additional information. Use either tool to evaluate how well the place and route tools met the input timing constraints.

Development System Reference Guide

www.xilinx.com

47

Page 47
Image 47
Xilinx 8.2i manual Static Timing Analysis FPGAs Only

8.2i specifications

Xilinx 8.2i is a significant version of the Xilinx ISE (Integrated Software Environment) that emerged in the early 2000s, marking an important milestone in the world of FPGA (Field-Programmable Gate Array) development. This version introduced a slew of advanced features, technologies, and characteristics that made it an indispensable tool for engineers and developers in designing, simulating, and implementing digital circuits.

One of the standout features of Xilinx 8.2i is its enhanced design entry capabilities. This version supports multiple design entry methods, including schematic entry, VHDL, and Verilog HDL, giving engineers the flexibility to choose their preferred approach. The integrated environment provides user-friendly graphical interfaces, making it accessible for both novice and experienced users.

Xilinx 8.2i's synthesis tools have been improved to enable more efficient design compilation and optimization. The new algorithms used in this version facilitate faster synthesis times while reducing power consumption and improving performance. Furthermore, it features support for advanced FPGA architectures, which allows for the implementation of more complex designs with greater efficiency.

The implementation tools in Xilinx 8.2i include advanced place and route capabilities, utilizing state-of-the-art algorithms for optimized resource usage. These tools enable designers to make better use of FPGA resources, ensuring that designs fit within the constraints of the target device while maximizing performance.

Another key characteristic of Xilinx 8.2i is its extensive support for various Xilinx devices such as the Spartan, Virtex, and CoolRunner series. This compatibility ensures that developers can leverage the powerful features of these FPGA families, including high-speed transceivers and DSP slices.

Xilinx 8.2i also places a strong emphasis on simulation and verification. The version integrates with various simulation tools, allowing for thorough testing of the designs before implementation. This reduces the risk of errors and ensures that the final product meets specifications.

In addition, this version includes support for design constraints, enabling engineers to specify timing, area, and other critical design parameters. By accommodating constraints, Xilinx 8.2i helps in achieving reliable and efficient designs tailored to project needs.

In summary, Xilinx 8.2i is a robust software development tool that enhances the design process for FPGAs. Its comprehensive features, including multiple design entry options, advanced synthesis and implementation tools, extensive device support, and strong simulation capabilities, make it a valuable resource for engineers and developers striving for innovation in digital design.