Xilinx 8.2i manual EDIF2NGD Options, Add PADs to Top-Level Port Signals, Aul Allow Unmatched LOCs

Models: 8.2i

1 422
Download 422 pages 26.35 Kb
Page 382
Image 382

Appendix :

R

EDIF2NGD Options

This section describes the EDIF2NGD command line options.

–a (Add PADs to Top-Level Port Signals)

The –a option adds PAD properties to all top-level port signals. This option is necessary if the EDIF2NGD input is an EDIF file in which PAD symbols were translated into ports. If you do not specify a –a option for one of these EDIF files, the absence of PAD instances in the EDIF file causes EDIF2NGD to read the design incorrectly. Subsequently, MAP interprets the logic as unused and removes it.

In all Mentor Graphics and Cadence EDIF files, PAD symbols are translated into ports. For EDIF files from either of these vendors, the –a option is set automatically; you do not have to enter the –a option on the EDIF2NGD command line.

–aul (Allow Unmatched LOCs)

By default (without the –aul option), EDIF2NGD generates an error if the constraints specified for pin, net, or instance names in the NCF file cannot be found in the design. If this error occurs, an NGO file is not written. If you enter the –aul option, EDIF2NGD generates a warning instead of an error for LOC constraints and writes an NGO file.

You may want to run EDIF2NGD with the –aul option if your constraints file includes location constraints for pin, net, or instance names that have not yet been defined in the HDL or schematic. This allows you to maintain one version of your constraints files for both partially complete and final designs.

Note: When using this option, make sure you do not have misspelled net or instance names in your design. Misspelled names may cause inaccurate placing and routing.

–f (Execute Commands File)

–fcommand_file

The –f option executes the command line arguments in the specified command_file. For more information on the –f option, see “–f (Execute Commands File)” in Chapter 1.

–intstyle (Integration Style)

–intstyle {ise xflow silent}

The –intstyle option reduces screen output based on the integration style you are running. When using the –intstyle option, one of three modes must be specified: ise, xflow, or silent. The mode sets the way information is displayed in the following ways:

–intstyle ise

This mode indicates the program is being run as part of an integrated design environment.

–intstyle xflow

This mode indicates the program is being run as part of an integrated batch flow.

–intstyle silent

This mode limits screen output to warning and error messages only.

Note: The -intstyle option is automatically invoked when running in an integrated environment, such as Project Navigator or XFLOW.

382

www.xilinx.com

Development System Reference Guide

Page 382
Image 382
Xilinx 8.2i manual EDIF2NGD Options, Add PADs to Top-Level Port Signals, Aul Allow Unmatched LOCs

8.2i specifications

Xilinx 8.2i is a significant version of the Xilinx ISE (Integrated Software Environment) that emerged in the early 2000s, marking an important milestone in the world of FPGA (Field-Programmable Gate Array) development. This version introduced a slew of advanced features, technologies, and characteristics that made it an indispensable tool for engineers and developers in designing, simulating, and implementing digital circuits.

One of the standout features of Xilinx 8.2i is its enhanced design entry capabilities. This version supports multiple design entry methods, including schematic entry, VHDL, and Verilog HDL, giving engineers the flexibility to choose their preferred approach. The integrated environment provides user-friendly graphical interfaces, making it accessible for both novice and experienced users.

Xilinx 8.2i's synthesis tools have been improved to enable more efficient design compilation and optimization. The new algorithms used in this version facilitate faster synthesis times while reducing power consumption and improving performance. Furthermore, it features support for advanced FPGA architectures, which allows for the implementation of more complex designs with greater efficiency.

The implementation tools in Xilinx 8.2i include advanced place and route capabilities, utilizing state-of-the-art algorithms for optimized resource usage. These tools enable designers to make better use of FPGA resources, ensuring that designs fit within the constraints of the target device while maximizing performance.

Another key characteristic of Xilinx 8.2i is its extensive support for various Xilinx devices such as the Spartan, Virtex, and CoolRunner series. This compatibility ensures that developers can leverage the powerful features of these FPGA families, including high-speed transceivers and DSP slices.

Xilinx 8.2i also places a strong emphasis on simulation and verification. The version integrates with various simulation tools, allowing for thorough testing of the designs before implementation. This reduces the risk of errors and ensures that the final product meets specifications.

In addition, this version includes support for design constraints, enabling engineers to specify timing, area, and other critical design parameters. By accommodating constraints, Xilinx 8.2i helps in achieving reliable and efficient designs tailored to project needs.

In summary, Xilinx 8.2i is a robust software development tool that enhances the design process for FPGAs. Its comprehensive features, including multiple design entry options, advanced synthesis and implementation tools, extensive device support, and strong simulation capabilities, make it a valuable resource for engineers and developers striving for innovation in digital design.