Motorola MCF5282, MCF5281 user manual External Multiplexing Operation

Models: MCF5282 MCF5281

1 816
Download 816 pages 28.97 Kb
Page 616
Image 616

Functional Description

For example, four 4-input multiplexer chips can be put at the connector where the analog signals first arrive on the printed circuit board. As a result, only four analog signals need to be shielded from noise as they approach the microcontroller chip, rather than having to protect 16 analog signals. However, external multiplexer chips may introduce additional noise and errors if not properly utilized. Therefore, it is necessary to maintain low “on” resistance (the impedance of an analog switch when active within a multiplexed chip) and insert a low pass filter (R/C) on the input side of the multiplexed chip.

27.7.2.1External Multiplexing Operation

The QADC can use from one to four external multiplexer chips to expand the number of analog signals that may be converted. Up to 16 analog channels can be converted through external multiplexer selection. The externally multiplexed channels are automatically selected from the channel field of the CCW, the same as internally multiplexed channels. The QADC is configured for the externally multiplexed mode by setting the MUX bit in control register 0 (QACR0).

Figure 27-18shows the maximum configuration of four external multiplexer chips connected to the QADC. The external multiplexer chips select one of four analog inputs and connect it to one analog output, which becomes an input to the QADC. The QADC provides two multiplexed address signals, MA[1:0], to select one of four inputs. These inputs are connected to all four external multiplexer chips. The analog output of the four multiplexer chips are each connected to separate QADC inputs (ANW, ANX, ANY, and ANZ) as shown in Figure 27-18

27-32

MCF5282 User’s Manual

MOTOROLA

Page 616
Image 616
Motorola MCF5282, MCF5281 user manual External Multiplexing Operation