Motorola DSP56301 user manual Serial Communications Interface SCI, Triple Timer Module

Models: DSP56301

1 372
Download 372 pages 304 b
Page 29
Image 29

Peripherals

1.7.4Serial Communications Interface (SCI)

The SCI provides a full-duplex port for serial communications with other DSPs, microprocessors, or peripherals such as modems. The SCI interfaces without additional logic to peripherals that use TTL-level signals. With a small amount of additional logic, the SCI can connect to peripheral interfaces that have non-TTL level signals, such as the RS-232C, RS-422, and so forth. This interface uses three dedicated signals: transmit data, receive data, and SCI serial clock. It supports industry-standard asynchronous bit rates and protocols, as well as high-speed synchronous data transmission (up to 12.5 Mbps for a 100 MHz clock). SCI asynchronous protocols include a multidrop mode for master/slave operation with wakeup on idle line and wakeup on address bit capability. This mode allows the DSP56301 to share a single serial line efficiently with other peripherals.

Separate SCI transmit and receive sections can operate asynchronously with respect to each other. A programmable baud-rate generator provides the transmit and receive clocks. An enable vector and an interrupt vector allow the baud-rate generator to function as a general-purpose timer when the SCI is not using it or when the interrupt timing is the same as that used by the SCI.

1.7.5Triple Timer Module

The triple timer module is composed of a common 21-bit prescaler and three independent and identical general-purpose 24-bit timer/event counters, each with its own memory-mapped register set. Each timer has the following properties:

νA single signal that can function as a GPIO signal or as a timer signal

νUses internal or external clocking and can interrupt the DSP after a specified number of events (clocks) or signal an external device after counting internal events

νConnects to the external world through one bidirectional signal. When this signal is configured as an input, the timer functions as an external event counter or measures the external pulse width/signal period. When the signal is used as an output, the timer functions as either a timer, a watchdog, or a pulse width modulator.

Overview

1-13

Page 29
Image 29
Motorola DSP56301 user manual Serial Communications Interface SCI, Triple Timer Module

DSP56301 specifications

The Motorola DSP56301 is a highly efficient digital signal processor, specifically engineered for real-time audio and speech processing applications. This DSP is part of Motorola's renowned DSP56300 family, which is recognized for its innovative features and outstanding performance in the realm of digital signal processing.

One of the main features of the DSP56301 is its ability to handle complex computations at high speeds. With a maximum clock frequency of 66 MHz, it delivers fast performance, enabling it to process audio signals in real time. The chip is built on a 24-bit architecture, which allows for high-resolution audio processing. This is particularly beneficial in applications such as telecommunications, consumer audio devices, and professional audio equipment, where precision is paramount.

The DSP56301 boasts a comprehensive instruction set that includes efficient mathematical operations, which are essential for digital filters and audio effects processing. One of the key innovations of this device is its dual data path architecture, which permits simultaneous processing of multiple data streams. This feature significantly enhances the device's throughput and responsiveness, making it suitable for demanding applications such as voice recognition and synthesis.

In terms of memory regions, the DSP56301 includes several on-chip memory categories, such as program memory, data memory, and a specialized memory for coefficients. The architecture's support for external memory expansion further increases its versatility, allowing designers to tailor systems to their specific requirements.

The DSP56301 implements advanced features such as a powerful on-chip hardware multiplier and accumulator, simplifying complex mathematical tasks and accelerating the execution of algorithms. Its flexible interrupt system enhances its capability to respond to time-sensitive operations, while the integrated serial ports facilitate efficient data communication with external devices.

Power consumption is also a vital characteristic of the DSP56301. It is designed with energy efficiency in mind, allowing for extended operation in battery-powered devices. The chip’s low power requirements are particularly advantageous in portable audio devices and other applications where energy conservation is crucial.

In conclusion, the Motorola DSP56301 is an exceptional digital signal processor that combines high processing power, flexibility, and efficiency. Its main features, advanced technologies, and robust architecture make it a top choice for developers seeking to create sophisticated audio and signal processing systems. With its enduring legacy in the industry, the DSP56301 continues to be relevant in a variety of modern applications, ensuring it remains a valuable tool for engineers and designers.