Motorola DSP56301 user manual Port E Control Register Pcre, PE2 PE1 PE0, Sclk TXD RXD

Models: DSP56301

1 372
Download 372 pages 304 b
Page 260
Image 260

GPIO Signals and Registers

prevent overruns unless transmit interrupts are enabled. Either STX or STXA is usually written as part of the interrupt service routine. An interrupt is generated only if TDRE is set. The transmit shift register is indirectly visible via the SSR[TRNE] bit.

In Synchronous mode, data is synchronized with the transmit clock. That clock can have either an internal or external source, as defined by the TCM bit in the SCCR. The length and format of the serial word is defined by the WDS0, WDS1, and WDS2 control bits in the SCR. In Asynchronous mode, the start bit, the eight data bits (with the LSB first if SSFTD = 0 and the MSB first if SSFTD = 1), the address/data indicator bit or parity bit, and the stop bit are transmitted in that order. The data to be transmitted can be written to any one of the three STX addresses. If SCKP is set and SSHTD is set, SCI Synchronous mode is equivalent to the SSI operation in 8-bit data on-demand mode.

Note: When data is written to a peripheral device, there is a two-cycle pipeline delay until any status bits affected by this operation are updated. If you read any of those status bits within the next two cycles, the bit does not reflect its current status. For details see the DSP56300 Family Manual.

8.7GPIO Signals and Registers

Three registers control the GPIO functionality of the SCI pins: Port E control register (PCRE), Port E direction register (PRRE) and Port E data register (PDRE).

8.7.1Port E Control Register (PCRE)

The read/write PCRE controls the functionality of SCI GPIO signals. Each of the PCRE[2–0] bits controls the functionality of the corresponding port signal. When a PCRE[i] bit is set, the corresponding port signal is configured as an SCI signal. When a PC[i] bit is cleared, the corresponding port signal is configured as a GPIO signal. A hardware RESET signal or a software RESET instruction clears all PCRE bits.

23

22

21

20

19

18

17

16

15

14

13

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

10

9

8

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PE2/

PE1/

PE0/

 

 

 

 

 

 

 

 

 

SCLK

TXD

RXD

Note:

For bits 2–0, a 0 selects PEn as the signal and a 1 selects the specified SCI signal.

 

 

 

= Reserved. Read as zero. Write to zero for future compatibility.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-8.Port E Control Register (PCRE X:$FFFF9F)

8-24

DSP56301 User’s Manual

Page 260
Image 260
Motorola DSP56301 user manual Port E Control Register Pcre, PE2 PE1 PE0, Sclk TXD RXD

DSP56301 specifications

The Motorola DSP56301 is a highly efficient digital signal processor, specifically engineered for real-time audio and speech processing applications. This DSP is part of Motorola's renowned DSP56300 family, which is recognized for its innovative features and outstanding performance in the realm of digital signal processing.

One of the main features of the DSP56301 is its ability to handle complex computations at high speeds. With a maximum clock frequency of 66 MHz, it delivers fast performance, enabling it to process audio signals in real time. The chip is built on a 24-bit architecture, which allows for high-resolution audio processing. This is particularly beneficial in applications such as telecommunications, consumer audio devices, and professional audio equipment, where precision is paramount.

The DSP56301 boasts a comprehensive instruction set that includes efficient mathematical operations, which are essential for digital filters and audio effects processing. One of the key innovations of this device is its dual data path architecture, which permits simultaneous processing of multiple data streams. This feature significantly enhances the device's throughput and responsiveness, making it suitable for demanding applications such as voice recognition and synthesis.

In terms of memory regions, the DSP56301 includes several on-chip memory categories, such as program memory, data memory, and a specialized memory for coefficients. The architecture's support for external memory expansion further increases its versatility, allowing designers to tailor systems to their specific requirements.

The DSP56301 implements advanced features such as a powerful on-chip hardware multiplier and accumulator, simplifying complex mathematical tasks and accelerating the execution of algorithms. Its flexible interrupt system enhances its capability to respond to time-sensitive operations, while the integrated serial ports facilitate efficient data communication with external devices.

Power consumption is also a vital characteristic of the DSP56301. It is designed with energy efficiency in mind, allowing for extended operation in battery-powered devices. The chip’s low power requirements are particularly advantageous in portable audio devices and other applications where energy conservation is crucial.

In conclusion, the Motorola DSP56301 is an exceptional digital signal processor that combines high processing power, flexibility, and efficiency. Its main features, advanced technologies, and robust architecture make it a top choice for developers seeking to create sophisticated audio and signal processing systems. With its enduring legacy in the industry, the DSP56301 continues to be relevant in a variety of modern applications, ensuring it remains a valuable tool for engineers and designers.