Motorola DSP56301 user manual Serial Control Signal SC0, Serial Control Signal SC1

Models: DSP56301

1 372
Download 372 pages 304 b
Page 202
Image 202

ESSI Data and Control Signals

7.2.4Serial Control Signal (SC0)

ESSI0: SC00; ESSI1: SC10

To determine the function of the SC0 signal, select either Synchronous or Asynchronous mode, according to Table 7-2. In Asynchronous mode, this signal is used for the receive clock I/O. In Synchronous mode, this signal is the transmitter data out signal for transmit shift register TX1 or for serial flag I/O. A typical application of serial flag I/O would be multiple device selection for addressing in codec systems.

If SC0 is configured as a serial flag signal or receive clock signal, its direction is determined by the Serial Control Direction 0 (SCD0) bit in ESSI Control Register B (CRB). When configured as an output, SC0 functions as the serial Output Flag 0 (OF0) or as a receive shift register clock output. If SC0 is used as the serial Output Flag 0, its value is determined by the value of the serial Output Flag 0 (OF0) bit in the CRB. If SC0 is an input, it functions as either serial Input Flag 0 or a receive shift register clock input. As serial Input Flag 0, SC0 controls the state of the serial Input Flag 0 (IF0) bit in the ESSI Status Register (SSISR).

When SC0 is configured as a transmit data signal, it is always an output signal, regardless of the SCD0 bit value. SC0 is fully synchronized with the other transmit data signals (STD and SC1). SC0 can be programmed as a GPIO signal (P0) when the ESSI SC0 function is not in use.

Note: The ESSI can operate with more than one active transmitter only in Synchronous mode.

7.2.5Serial Control Signal (SC1)

ESSI0:SC01; ESSI1: SCI11

To determine the function of SC1, select either Synchronous or Asynchronous mode, according to Table 7-2. In Asynchronous mode (as for a single codec with asynchronous transmit and receive), SC1 is the receiver frame sync I/O. In Synchronous mode, SC1 is the transmitter data out signal of transmit shift register TX2, for the transmitter 0 drive-enabled signal, or for serial flag I/O. As serial flag I/O, SC1 operates like SC0. SC0 and SC1are independent flags but can be used together for multiple serial device selection; they can be unencoded to select up to two CODECs or decoded externally to select up to four CODECs. If SC1 is configured as a serial flag or receive frame sync signal, the Serial Control Direction 1 CRB[SCD1] bit determines its direction.

7-4

DSP56301 User’s Manual

Page 202
Image 202
Motorola DSP56301 user manual Serial Control Signal SC0, Serial Control Signal SC1

DSP56301 specifications

The Motorola DSP56301 is a highly efficient digital signal processor, specifically engineered for real-time audio and speech processing applications. This DSP is part of Motorola's renowned DSP56300 family, which is recognized for its innovative features and outstanding performance in the realm of digital signal processing.

One of the main features of the DSP56301 is its ability to handle complex computations at high speeds. With a maximum clock frequency of 66 MHz, it delivers fast performance, enabling it to process audio signals in real time. The chip is built on a 24-bit architecture, which allows for high-resolution audio processing. This is particularly beneficial in applications such as telecommunications, consumer audio devices, and professional audio equipment, where precision is paramount.

The DSP56301 boasts a comprehensive instruction set that includes efficient mathematical operations, which are essential for digital filters and audio effects processing. One of the key innovations of this device is its dual data path architecture, which permits simultaneous processing of multiple data streams. This feature significantly enhances the device's throughput and responsiveness, making it suitable for demanding applications such as voice recognition and synthesis.

In terms of memory regions, the DSP56301 includes several on-chip memory categories, such as program memory, data memory, and a specialized memory for coefficients. The architecture's support for external memory expansion further increases its versatility, allowing designers to tailor systems to their specific requirements.

The DSP56301 implements advanced features such as a powerful on-chip hardware multiplier and accumulator, simplifying complex mathematical tasks and accelerating the execution of algorithms. Its flexible interrupt system enhances its capability to respond to time-sensitive operations, while the integrated serial ports facilitate efficient data communication with external devices.

Power consumption is also a vital characteristic of the DSP56301. It is designed with energy efficiency in mind, allowing for extended operation in battery-powered devices. The chip’s low power requirements are particularly advantageous in portable audio devices and other applications where energy conservation is crucial.

In conclusion, the Motorola DSP56301 is an exceptional digital signal processor that combines high processing power, flexibility, and efficiency. Its main features, advanced technologies, and robust architecture make it a top choice for developers seeking to create sophisticated audio and signal processing systems. With its enduring legacy in the industry, the DSP56301 continues to be relevant in a variety of modern applications, ensuring it remains a valuable tool for engineers and designers.