Motorola DSP56301 user manual ESSI Transmit Slot Mask Register B Tsmb

Models: DSP56301

1 372
Download 372 pages 304 b
Page 232
Image 232

ESSI Programming Model

23

22

21

20

19

18

17

16

15

14

13

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TS31

TS30

TS29

TS28

11

10

9

8

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

TS27

TS26

TS25

TS24

TS23

TS22

TS21

TS20

TS19

TS18

TS17

TS16

 

 

 

 

 

 

 

 

 

 

 

 

—Reserved bit; read as 0; write to 0 0 for future compatibility. (ESSI0 X:$FFFFB3, ESSI1 X:$FFFFA3)

Figure 7-15.ESSI Transmit Slot Mask Register B (TSMB)

TSMA and TSMB (as in Figure 7-12and Figure 7-13) can be seen as a single 32-bit register, TSM. Bit n in TSM (TSn) is an enable/disable control bit for transmission in slot number N. When TSn is cleared, all the data signals of the enabled transmitters are tri-stated during transmit time slot number N. The data still transfers from the enabled transmit data register(s) to the transmit shift register. However, the TDE and the TUE flags are not set. Consequently, during a disabled slot, no transmitter empty interrupt is generated. The DSP is interrupted only for enabled slots. Data written to the transmit data register when the transmitter empty interrupt request is serviced transmits in the next enabled transmit time slot. When TSn is set, the transmit sequence proceeds normally. Data transfers from the TX register to the shift register during slot number N, and the TDE flag is set. The TSM slot mask does not conflict with the TSR. Even if a slot is enabled in the TSM, you can chose to write to the TSR to tri-state the signals of the enabled transmitters during the next transmission slot. Setting the bits in the TSM affects the next frame transmission. The frame being transmitted is not affected by the new TSM setting. If the TSM is read, it shows the current setting.

After a hardware RESET signal or software RESET instruction, the TSM register is reset to $FFFFFFFF, enabling all 32 slots for data transmission.

7-34

DSP56301 User’s Manual

Page 232
Image 232
Motorola DSP56301 user manual ESSI Transmit Slot Mask Register B Tsmb

DSP56301 specifications

The Motorola DSP56301 is a highly efficient digital signal processor, specifically engineered for real-time audio and speech processing applications. This DSP is part of Motorola's renowned DSP56300 family, which is recognized for its innovative features and outstanding performance in the realm of digital signal processing.

One of the main features of the DSP56301 is its ability to handle complex computations at high speeds. With a maximum clock frequency of 66 MHz, it delivers fast performance, enabling it to process audio signals in real time. The chip is built on a 24-bit architecture, which allows for high-resolution audio processing. This is particularly beneficial in applications such as telecommunications, consumer audio devices, and professional audio equipment, where precision is paramount.

The DSP56301 boasts a comprehensive instruction set that includes efficient mathematical operations, which are essential for digital filters and audio effects processing. One of the key innovations of this device is its dual data path architecture, which permits simultaneous processing of multiple data streams. This feature significantly enhances the device's throughput and responsiveness, making it suitable for demanding applications such as voice recognition and synthesis.

In terms of memory regions, the DSP56301 includes several on-chip memory categories, such as program memory, data memory, and a specialized memory for coefficients. The architecture's support for external memory expansion further increases its versatility, allowing designers to tailor systems to their specific requirements.

The DSP56301 implements advanced features such as a powerful on-chip hardware multiplier and accumulator, simplifying complex mathematical tasks and accelerating the execution of algorithms. Its flexible interrupt system enhances its capability to respond to time-sensitive operations, while the integrated serial ports facilitate efficient data communication with external devices.

Power consumption is also a vital characteristic of the DSP56301. It is designed with energy efficiency in mind, allowing for extended operation in battery-powered devices. The chip’s low power requirements are particularly advantageous in portable audio devices and other applications where energy conservation is crucial.

In conclusion, the Motorola DSP56301 is an exceptional digital signal processor that combines high processing power, flexibility, and efficiency. Its main features, advanced technologies, and robust architecture make it a top choice for developers seeking to create sophisticated audio and signal processing systems. With its enduring legacy in the industry, the DSP56301 continues to be relevant in a variety of modern applications, ensuring it remains a valuable tool for engineers and designers.