Motorola DSP56301 Dynamic Memory Configuration Switching, External I/O Space-Y Data Memory

Models: DSP56301

1 372
Download 372 pages 304 b
Page 65
Image 65

Dynamic Memory Configuration Switching

3.3.3External I/O Space—Y Data Memory

The off-chip peripheral registers should be mapped into the top 128 locations of Y data memory ($FFFF80–$FFFFFF in the 24-bit Address mode or $FF80–$FFFF in the 16-bit Address mode) to take advantage of the Move Peripheral Data (MOVEP) instruction and the bit-oriented instructions (BCHG, BCLR, BSET, BTST, BRCLR, BRSET, BSCLR, BSSET, JCLR, JSET, JSCLR, and JSSET).

3.4Dynamic Memory Configuration Switching

Do not change the OMR[MS] bit when the SR[CE] bit is set. The Instruction Cache occupies the top 1 K of what is otherwise Program RAM, and to switch memory into or out of Program RAM when the cache is enabled can cause conflicts. To change the MS bit when CE is set:

1.Clear CE.

2.Change MS.

3.Set CE.

CAUTION

To ensure that dynamic switching is trouble-free, do not allow any accesses (including instruction fetches) to or from the affected address ranges in program and data memories during the switch cycle.

Because an interrupt could cause the DSP to fetch instructions out of sequence and might violate the switch condition, special care should be taken in relation to the interrupt vector routines.

CAUTION

Pay special attention when executing a memory switch routine using the OnCE port. Running the switch routine in trace mode, for example, can cause the switch to complete after the MS bit changes while the DSP is in Debug mode. As a result, subsequent instructions may be fetched according to the new memory configuration (after the switch) and thus may not execute properly.

Memory Configuration

3-5

Page 65
Image 65
Motorola DSP56301 user manual Dynamic Memory Configuration Switching, External I/O Space-Y Data Memory

DSP56301 specifications

The Motorola DSP56301 is a highly efficient digital signal processor, specifically engineered for real-time audio and speech processing applications. This DSP is part of Motorola's renowned DSP56300 family, which is recognized for its innovative features and outstanding performance in the realm of digital signal processing.

One of the main features of the DSP56301 is its ability to handle complex computations at high speeds. With a maximum clock frequency of 66 MHz, it delivers fast performance, enabling it to process audio signals in real time. The chip is built on a 24-bit architecture, which allows for high-resolution audio processing. This is particularly beneficial in applications such as telecommunications, consumer audio devices, and professional audio equipment, where precision is paramount.

The DSP56301 boasts a comprehensive instruction set that includes efficient mathematical operations, which are essential for digital filters and audio effects processing. One of the key innovations of this device is its dual data path architecture, which permits simultaneous processing of multiple data streams. This feature significantly enhances the device's throughput and responsiveness, making it suitable for demanding applications such as voice recognition and synthesis.

In terms of memory regions, the DSP56301 includes several on-chip memory categories, such as program memory, data memory, and a specialized memory for coefficients. The architecture's support for external memory expansion further increases its versatility, allowing designers to tailor systems to their specific requirements.

The DSP56301 implements advanced features such as a powerful on-chip hardware multiplier and accumulator, simplifying complex mathematical tasks and accelerating the execution of algorithms. Its flexible interrupt system enhances its capability to respond to time-sensitive operations, while the integrated serial ports facilitate efficient data communication with external devices.

Power consumption is also a vital characteristic of the DSP56301. It is designed with energy efficiency in mind, allowing for extended operation in battery-powered devices. The chip’s low power requirements are particularly advantageous in portable audio devices and other applications where energy conservation is crucial.

In conclusion, the Motorola DSP56301 is an exceptional digital signal processor that combines high processing power, flexibility, and efficiency. Its main features, advanced technologies, and robust architecture make it a top choice for developers seeking to create sophisticated audio and signal processing systems. With its enduring legacy in the industry, the DSP56301 continues to be relevant in a variety of modern applications, ensuring it remains a valuable tool for engineers and designers.