Motorola DSP56301 user manual Essi Enhancements

Models: DSP56301

1 372
Download 372 pages 304 b
Page 200
Image 200

ESSI Enhancements

Note: This synchronous interface should not be confused with the asynchronous channels

mode of the ESSI, in which separate clocks are used for the receiver and transmitter. In that mode, the ESSI is still a synchronous device because all transfers are synchronized to these clocks. Pin notations for the generic ESSI refer to the analogous pin of ESSI0 (PCx) and ESSI1 (PDx).

Additional synchronization signals delineate the word frames. The Normal mode of operation transfers data at a periodic rate, one word per period. The Network mode is similar in that it is also for periodic transfers; however, it supports up to 32 words (time slots) per period. The Network mode can be used to build time division multiplexed (TDM) networks. In contrast, the On-Demand mode is for nonperiodic transfers of data. This mode, which offers a subset of the Motorola Serial Peripheral Interface (SPI) protocol, can transfer data serially at high speed when the data become available. Since each ESSI unit can be configured with one receiver and three transmitters, the two units can be used together for surround sound applications (which need two digital input channels and six digital output channels).

7.1ESSI Enhancements

The DSP56000 SSI is enhanced in the following ways to make the ESSI:

ν

ν

ν

ν

Network enhancements

Time slot mask registers (receive and transmit)

End-of-frame interrupt

Drive enable signal (used with transmitter 0)

Audio enhancements

Three transmitters per ESSI (for six-channel surround-sound) General enhancements

Can trigger DMA interrupts (receive or transmit)

Separate exception enable bits

Other changes

One divide-by-2 step is removed from the internal clock source chain

The CRA[PSR] bit definition is reversed

Gated-Clock mode is not available

7-2

DSP56301 User’s Manual

Page 200
Image 200
Motorola DSP56301 user manual Essi Enhancements

DSP56301 specifications

The Motorola DSP56301 is a highly efficient digital signal processor, specifically engineered for real-time audio and speech processing applications. This DSP is part of Motorola's renowned DSP56300 family, which is recognized for its innovative features and outstanding performance in the realm of digital signal processing.

One of the main features of the DSP56301 is its ability to handle complex computations at high speeds. With a maximum clock frequency of 66 MHz, it delivers fast performance, enabling it to process audio signals in real time. The chip is built on a 24-bit architecture, which allows for high-resolution audio processing. This is particularly beneficial in applications such as telecommunications, consumer audio devices, and professional audio equipment, where precision is paramount.

The DSP56301 boasts a comprehensive instruction set that includes efficient mathematical operations, which are essential for digital filters and audio effects processing. One of the key innovations of this device is its dual data path architecture, which permits simultaneous processing of multiple data streams. This feature significantly enhances the device's throughput and responsiveness, making it suitable for demanding applications such as voice recognition and synthesis.

In terms of memory regions, the DSP56301 includes several on-chip memory categories, such as program memory, data memory, and a specialized memory for coefficients. The architecture's support for external memory expansion further increases its versatility, allowing designers to tailor systems to their specific requirements.

The DSP56301 implements advanced features such as a powerful on-chip hardware multiplier and accumulator, simplifying complex mathematical tasks and accelerating the execution of algorithms. Its flexible interrupt system enhances its capability to respond to time-sensitive operations, while the integrated serial ports facilitate efficient data communication with external devices.

Power consumption is also a vital characteristic of the DSP56301. It is designed with energy efficiency in mind, allowing for extended operation in battery-powered devices. The chip’s low power requirements are particularly advantageous in portable audio devices and other applications where energy conservation is crucial.

In conclusion, the Motorola DSP56301 is an exceptional digital signal processor that combines high processing power, flexibility, and efficiency. Its main features, advanced technologies, and robust architecture make it a top choice for developers seeking to create sophisticated audio and signal processing systems. With its enduring legacy in the industry, the DSP56301 continues to be relevant in a variety of modern applications, ensuring it remains a valuable tool for engineers and designers.