244 Agilent InfiniiVision 5000 Series Oscilloscopes Programmer's Reference
3Commands by Subsystem

:MEASure:TVALue

(see page 530)
Query Syntax :MEASure:TVALue? <value>, [<slope>]<occurrence>[,<source>]
<value> ::= the vertical value that the waveform must cross. The
value can be volts or a math function value such as dB,
Vs, or V/s.
<slope> ::= direction of the waveform. A rising slope is indicated
by a plus sign (+). A falling edge is indicated by a
minus sign (-).
<occurrence> ::= the transition to be reported. If the occurrence
number is one, the first crossing is reported. If
the number is two, the second crossing is reported,
etc.
<source> ::= {CHANnel<n> | FUNCtion | MATH}
<n>::={1|2|3|4}forthefour channel oscilloscope models
<n> ::= {1 | 2} for the two channel oscilloscope models
When the :MEASure:TVALue? query is sent, the displayed signal is
searched for the specified value level and transition. The time interval
between the trigger event and this defined occurrence is returned as the
response to the query.
The specified value can be negative or positive. To specify a negative
value, use a minus sign (- ). The sign of the slope selects a rising (+) or
falling (- ) edge. If no sign is specified for the slope, it is assumed to be
the rising edge.
The magnitude of the occurrence defines the occurrence to be reported.
For example, +3 returns the time for the third time the waveform crosses
the specified value level in the positive direction. Once this value crossing
is found, the oscilloscope reports the time at that crossing in seconds,
with the trigger point (time zero) as the reference.
If the specified crossing cannot be found, the oscilloscope reports
+9.9E+37. This value is returned if the waveform does not cross the
specified value, or if the waveform does not cross the specified value for
the specified number of times in the direction specified.
If the optional source parameter is specified, the current source is
modified.
Return Format <value><NL>
NOTE This query is not available if the source is FFT (Fast Fourier Transform).